Skip to main content Accessibility help
×
Home

Single and combined supplementation of glutamine and n-3 polyunsaturated fatty acids on host tolerance and tumour response to 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camptothecin (CPT-11)/5-fluorouracil chemotherapy in rats bearing Ward colon tumour

  • Hongyu Xue (a1), Séverine Le Roy (a2), Michael B. Sawyer (a1), Catherine J. Field (a3), Levinus A. Dieleman (a4) and Vickie E. Baracos (a1)...

Abstract

Prior reports suggest that during irinotecan (7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camptothecin; CPT-11) chemotherapy in laboratory rats, the anti-tumour efficacy and diarrhoea toxicity could be modulated by n-3 PUFA and glutamine, respectively. We further examined how these two dietary elements, when provided individually and in combination, would affect the efficacy of a cyclical regimen of CPT-11/5-fluorouracil (5-FU), an accepted combination regimen for colorectal cancer. Prior to initiating chemotherapy, diets enriched either with glutamine (2 %, w/w total diet) or n-3 PUFA (0·88 %, w/w total diet) alone, inhibited Ward colon tumour growth (P < 0·05). These diets also completely or partially normalized the changes in peripheral leucocyte counts associated with the tumour-bearing state (e.g. neutrophil proportion/concentration and lymphocyte proportion). During chemotherapy, either glutamine- or n-3 PUFA-enriched diet enhanced tumour chemo-sensitivity, and reduced body weight loss, anorexia and muscle wasting (v. animals fed control diet, P < 0·05). Surprisingly, providing both glutamine and n-3 PUFA together did not confer a greater benefit on tumour inhibition either in the presence or absence of chemotherapy; individual benefits associated with single treatments, particularly in respect to host nutritional status (i.e. body weight, food intake and muscle weight) and immune (peripheral leucocyte counts) features were instead partially or completely lost when these two nutrients were combined. These results draw into question the common assumption that there are additive or synergistic benefits of combinations of nutrients, which are beneficial on an individual basis, and suggest that co-supplementation with glutamine and n-3 PUFA is not indicated during chemotherapy with CPT-11 and 5-FU.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Single and combined supplementation of glutamine and n-3 polyunsaturated fatty acids on host tolerance and tumour response to 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camptothecin (CPT-11)/5-fluorouracil chemotherapy in rats bearing Ward colon tumour
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Single and combined supplementation of glutamine and n-3 polyunsaturated fatty acids on host tolerance and tumour response to 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camptothecin (CPT-11)/5-fluorouracil chemotherapy in rats bearing Ward colon tumour
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Single and combined supplementation of glutamine and n-3 polyunsaturated fatty acids on host tolerance and tumour response to 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camptothecin (CPT-11)/5-fluorouracil chemotherapy in rats bearing Ward colon tumour
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Professor Vickie E. Baracos, fax +1 780 432 8425, email vickieb@cancerboard.ab.ca

References

Hide All
1Hardman, WE (2002) Omega-3 fatty acids to augment cancer therapy. J Nutr 132, 3508S3512S.
2Savarese, DM, Savy, G, Vahdat, L, et al. (2003) Prevention of chemotherapy and radiation toxicity with glutamine. Cancer Treat Rev 29, 501513.
3Xue, H, Sawyer, MB, Field, CJ, et al. (2007) Nutritional modulation of antitumor efficacy and diarrhea toxicity related to irinotecan chemotherapy in rats bearing the ward colon tumor. Clin Cancer Res 13, 71467154.
4Ziegler, TR (2002) Glutamine supplementation in bone marrow transplantation. Br J Nutr 87, Suppl. 1, S9S15.
5Baracos, V, Mazurak, V & Ma, D (2004) n-3 Polyunsaturated fatty acids throughout the cancer trajectory: influence on disease incidence, progression, response to therapy and cancer-associated cachexia. Nutr Res Rev 17, 117.
6Conklin, KA (2002) Dietary polyunsaturated fatty acids: impact on cancer chemotherapy and radiation. Altern Med Rev 7, 421.
7Grimble, RF (2001) Nutritional modulation of immune function. Proc Nutr Soc 60, 389397.
8Choudhry, MA, Haque, F, Khan, M, et al. (2003) Enteral nutritional supplementation prevents mesenteric lymph node T-cell suppression in burn injury. Crit Care Med 31, 17641770.
9Chuntrasakul, C, Siltham, S, Sarasombath, S, et al. (2003) Comparison of an immunonutrition formula enriched arginine, glutamine and omega-3 fatty acid, with a currently high-enriched enteral nutrition for trauma patients. J Med Assoc Thai 86, 552561.
10Pearce, CB, Sadek, SA, Walters, AM, et al. (2006) A double-blind, randomised, controlled trial to study the effects of an enteral feed supplemented with glutamine, arginine, and omega-3 fatty acid in predicted acute severe pancreatitis. Jop 7, 361371.
11Yoshida, S, Matsui, M, Shirouzu, Y, et al. (1998) Effects of glutamine supplements and radiochemotherapy on systemic immune and gut barrier function in patients with advanced esophageal cancer. Ann Surg 227, 485491.
12Garrel, D (2004) The effect of supplemental enteral glutamine on plasma levels, gut function, and outcome in severe burns. JPEN J Parenter Enteral Nutr 28, 123, author reply 123.
13Lai, YN, Yeh, SL, Lin, MT, et al. (2004) Glutamine supplementation enhances mucosal immunity in rats with gut-derived sepsis. Nutrition 20, 286291.
14Roy, N, Barnett, M, Knoch, B, et al. (2007) Nutrigenomics applied to an animal model of Inflammatory Bowel Diseases: transcriptomic analysis of the effects of eicosapentaenoic acid- and arachidonic acid-enriched diets. Mutat Res 622, 103116.
15Lin, MT, Hsu, CS, Yeh, SL, et al. (2007) Effects of omega-3 fatty acids on leukocyte Th1/Th2 cytokine and integrin expression in rats with gut-derived sepsis. Nutrition 23, 179186.
16Hsu, CS, Chiu, WC, Yeh, CL, et al. (2006) Dietary fish oil enhances adhesion molecule and interleukin-6 expression in mice with polymicrobial sepsis. Br J Nutr 96, 854860.
17Roth, E & Kudsk, KA (2004) Immunonutrition: back to science. JPEN J Parenter Enteral Nutr 28, 278, author reply 279–280.
18Xue, H, Sawyer, MB, Field, CJ, et al. (2008) Bolus oral glutamine protects rats against CPT-11-induced diarrhea and differentially activates cytoprotective mechanisms in host intestine but not tumor. J Nutr 138, 740746.
19Hwang, PM, Bunz, F, Yu, J, et al. (2001) Ferredoxin reductase affects p53-dependent, 5-fluorouracil-induced apoptosis in colorectal cancer cells. Nat Med 7, 11111117.
20Yanez, JA, Teng, XW, Roupe, KA, et al. (2003) Chemotherapy induced gastrointestinal toxicity in rats: involvement of mitochondrial DNA, gastrointestinal permeability and cyclooxygenase-2. J Pharm Pharm Sci 6, 308314.
21Sadzuka, Y & Hirota, S (1997) Effect of CPT-11 on lipid peroxide level in mouse tissues. Jpn J Cancer Res 88, 512516.
22Timur, M, Akbas, SH & Ozben, T (2005) The effect of Topotecan on oxidative stress in MCF-7 human breast cancer cell line. Acta Biochim Pol 52, 897902.
23Wessner, B, Strasser, EM, Koitz, N, et al. (2007) Green tea polyphenol administration partly ameliorates chemotherapy-induced side effects in the small intestine of mice. J Nutr 137, 634640.
24Cao, S & Rustum, YM (2000) Synergistic antitumor activity of irinotecan in combination with 5-fluorouracil in rats bearing advanced colorectal cancer: role of drug sequence and dose. Cancer Res 60, 37173721.
25Le Bricon, T, Gugins, S, Cynober, L, et al. (1995) Negative impact of cancer chemotherapy on protein metabolism in healthy and tumor-bearing rats. Metabolism 44, 13401348.
26Melichar, B, Touskova, M, Solichova, D, et al. (2001) CD4+T-lymphocytopenia and systemic immune activation in patients with primary and secondary liver tumours. Scand J Clin Lab Invest 61, 363370.
27Johnson, RA & Roodman, GD (1989) Hematologic manifestations of malignancy. Dis Mon 35, 721768.
28Melichar, B, Touskova, M & Vesely, P (2002) Effect of irinotecan on the phenotype of peripheral blood leukocyte populations in patients with metastatic colorectal cancer. Hepatogastroenterology 49, 967970.
29Tabuchi, T, Ubukata, H, Saniabadi, AR, et al. (1999) Granulocyte apheresis as a possible new approach in cancer therapy: a pilot study involving two cases. Cancer Detect Prev 23, 417421.
30Zaloudik, J, Lauerova, L, Janakova, L, et al. (1999) Significance of pre-treatment immunological parameters in colorectal cancer patients with unresectable metastases to the liver. Hepatogastroenterology 46, 220227.
31Hannisdal, E & Engan, T (1991) Blood analyses and survival in symptom- and survey-detected lung cancer patients. J Intern Med 229, 337341.
32Harris, J, Sengar, D, Stewart, T, et al. (1976) The effect of immunosuppressive chemotherapy on immune function in patients with malignant disease. Cancer 37, 10581069.
33Stock, W & Hoffman, R (2000) White blood cells 1: non-malignant disorders. Lancet 355, 13511357.
34Ramos, EJ, Middleton, FA, Laviano, A, et al. (2004) Effects of omega-3 fatty acid supplementation on tumor-bearing rats. J Am Coll Surg 199, 716723.
35Roynette, CE, Calder, PC, Dupertuis, YM, et al. (2004) n-3 polyunsaturated fatty acids and colon cancer prevention. Clin Nutr 23, 139151.
36Knox, WE, Horowitz, ML & Friedell, GH (1969) The proportionality of glutaminase content to growth rate and morphology of rat neoplasms. Cancer Res 29, 669680.
37Kovacevic, Z & McGivan, JD (1983) Mitochondrial metabolism of glutamine and glutamate and its physiological significance. Physiol Rev 63, 547605.
38Ollenschlager, G, Simmel, A & Roth, E (1989) Availability of glutamine from peptides and acetylglutamine for human tumor-cell cultures. Metabolism 38, 4042.
39Knox, WE, Linder, M & Friedell, GH (1970) A series of transplantable rat mammary tumors with graded differentiation, growth rate, and glutaminase content. Cancer Res 30, 283287.
40Moyer, GH & Pitot, HC (1974) Static and dynamic aspects of amino acid pools in rat liver and Morris hepatomas 9618A and 7800. Cancer Res 34, 26472653.
41Austgen, TR, Dudrick, PS, Sitren, H, et al. (1992) The effects of glutamine-enriched total parenteral nutrition on tumor growth and host tissues. Ann Surg 215, 107113.
42Yoshida, S, Kaibara, A, Yamasaki, K, et al. (1995) Effect of glutamine supplementation on protein metabolism and glutathione in tumor-bearing rats. JPEN J Parenter Enteral Nutr 19, 492497.
43Wang, WS, Lin, JK, Lin, TC, et al. (2007) Oral glutamine is effective for preventing oxaliplatin-induced neuropathy in colorectal cancer patients. Oncologist 12, 312319.
44Kaufmann, Y, Kornbluth, J, Feng, Z, et al. (2003) Effect of glutamine on the initiation and promotion phases of DMBA-induced mammary tumor development. JPEN J Parenter Enteral Nutr 27, 411418.
45Fahr, MJ, Kornbluth, J, Blossom, S, et al. (1994) Harry M. Vars Research Award. Glutamine enhances immunoregulation of tumor growth. JPEN J Parenter Enteral Nutr 18, 471476.
46Klimberg, VS, Kornbluth, J, Cao, Y, et al. (1996) Glutamine suppresses PGE2 synthesis and breast cancer growth. J Surg Res 63, 293297.
47Todorova, VK, Harms, SA, Kaufmann, Y, et al. (2004) Effect of dietary glutamine on tumor glutathione levels and apoptosis-related proteins in DMBA-induced breast cancer of rats. Breast Cancer Res Treat 88, 247256.
48Pardini, RS (2006) Nutritional intervention with omega-3 fatty acids enhances tumor response to anti-neoplastic agents. Chem Biol Interact 162, 89105.
49Rubio, IT, Cao, Y, Hutchins, LF, et al. (1998) Effect of glutamine on methotrexate efficacy and toxicity. Ann Surg 227, 772778, discussion 778–780.
50Balendiran, GK, Dabur, R & Fraser, D (2004) The role of glutathione in cancer. Cell Biochem Funct 22, 343352.
51Germain, E, Chajes, V, Cognault, S, et al. (1998) Enhancement of doxorubicin cytotoxicity by polyunsaturated fatty acids in the human breast tumor cell line MDA-MB-231: relationship to lipid peroxidation. Int J Cancer 75, 578583.
52Rouse, K, Nwokedi, E, Woodliff, JE, et al. (1995) Glutamine enhances selectivity of chemotherapy through changes in glutathione metabolism. Ann Surg 221, 420426.
53Hardman, WE, Avula, CP, Fernandes, G, et al. (2001) Three percent dietary fish oil concentrate increased efficacy of doxorubicin against MDA-MB 231 breast cancer xenografts. Clin Cancer Res 7, 20412049.
54Hardman, WE, Moyer, MP & Cameron, IL (2002) Consumption of an omega-3 fatty acids product, INCELL AAFA, reduced side-effects of CPT-11 (irinotecan) in mice. Br J Cancer 86, 983988.
55Khan, SA & Wingard, JR (2001) Infection and mucosal injury in cancer treatment. J Natl Cancer Inst Monogr 29, 3136.
56Hoensch, H, Morgenstern, I, Petereit, G, et al. (2002) Influence of clinical factors, diet, and drugs on the human upper gastrointestinal glutathione system. Gut 50, 235240.
57Barbosa, DS, Cecchini, R, El Kadri, MZ, et al. (2003) Decreased oxidative stress in patients with ulcerative colitis supplemented with fish oil omega-3 fatty acids. Nutrition 19, 837842.
58Camuesco, D, Galvez, J, Nieto, A, et al. (2005) Dietary olive oil supplemented with fish oil, rich in EPA and DHA (n-3) polyunsaturated fatty acids, attenuates colonic inflammation in rats with DSS-induced colitis. J Nutr 135, 687694.
59Simopoulos, AP (2002) Omega-3 fatty acids in inflammation and autoimmune diseases. J Am Coll Nutr 21, 495505.
60Calder, PC (2003) n-3 Polyunsaturated fatty acids and inflammation: from molecular biology to the clinic. Lipids 38, 343352.
61Pavlick, KP, Laroux, FS, Fuseler, J, et al. (2002) Role of reactive metabolites of oxygen and nitrogen in inflammatory bowel disease. Free Radic Biol Med 33, 311322.
62Exner, R, Tamandl, D, Goetzinger, P, et al. (2003) Perioperative GLY-GLN infusion diminishes the surgery-induced period of immunosuppression: accelerated restoration of the lipopolysaccharide-stimulated tumor necrosis factor-alpha response. Ann Surg 237, 110115.
63Gennari, R, Alexander, JW & Eaves-Pyles, T (1995) Effect of different combinations of dietary additives on bacterial translocation and survival in gut-derived sepsis. JPEN J Parenter Enteral Nutr 19, 319325.
64Wessner, B, Strasser, EM, Spittler, A, et al. (2003) Effect of single and combined supply of glutamine, glycine, N-acetylcysteine, and R,S-alpha-lipoic acid on glutathione content of myelomonocytic cells. Clin Nutr 22, 515522.
65Hamani, D, Charrueau, C, Butel, MJ, et al. (2007) Effect of an immune-enhancing diet on lymphocyte in head-injured rats: what is the role of arginine? Intensive Care Med 33, 10761084.
66Boelens, PG, Melis, GC, van Leeuwen, PA, et al. (2006) Route of administration (enteral or parenteral) affects the contribution of l-glutamine to de novo l-arginine synthesis in mice: a stable-isotope study. Am J Physiol Endocrinol Metab 291, E683E690.

Keywords

Single and combined supplementation of glutamine and n-3 polyunsaturated fatty acids on host tolerance and tumour response to 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camptothecin (CPT-11)/5-fluorouracil chemotherapy in rats bearing Ward colon tumour

  • Hongyu Xue (a1), Séverine Le Roy (a2), Michael B. Sawyer (a1), Catherine J. Field (a3), Levinus A. Dieleman (a4) and Vickie E. Baracos (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed