Skip to main content Accessibility help
×
Home

The role of propionate and acetate in the control of food intake in sheep

  • D. A. H. Farningham (a1) and C. C. Whyte (a1)

Abstract

Sheep fed ad lib. on a good-quality pelleted diet (g/kg; hay 500, barley 300, molasses, fish meal and minerals) were infused via the hepatic portal vein with mixtures of the sodium salts of volatile fatty acids, acetate and propionate, and a variety of equivalent osmotic loads. Propionate infused at rates between 0·6 and 2·5 mmol/min consistently reduced food intake in a linear, dose-related manner. Propionate infusions resulted in consistent dose-related increases in peripheral venous plasma glucose concentration but variable changes in insulin concentration. Infusion of osmotically balanced mixtures of propionate, acetate, mannitol or saline (9 g NaCI/I) indicated that at constant osmotic loading propionate caused a greater reduction in intake than other infusions. Acetate infusions only depressed food intake when administered as a 1 M solution. Lower concentrations had little effect, similar to that of equivalent osmotic loads of mannitol or saline. It is concluded that portal propionate flow has a potential role in the control of food intake in ruminants which is independent of osmotic effects or changes in plasma insulin concentration.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The role of propionate and acetate in the control of food intake in sheep
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The role of propionate and acetate in the control of food intake in sheep
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The role of propionate and acetate in the control of food intake in sheep
      Available formats
      ×

Copyright

References

Hide All
Anil, M. H. & Forbes, J. M. (1980). Feeding in sheep during intraportal infusions of short-chain fatty acids and the effect of liver denervation. Journal of Physiology 298, 407414.
Anil, M. H. & Forbes, J. M. (1984). Selective liver denervation and feeding behaviour of sheep. Canadian Journal of Animal Science 64, 343344.
Anil, M. H. & Forbes, J. M. (1988). The roles of hepatic nerves in the reduction of food intake as a consequence of intraportal sodium propionate administration in the sheep. Quarterly Journal of Experimental Phjviology 73, 539546.
Ash, R. & Baird, G. D. (1973). Activation of volatile fatty acids in bovine liver and rumen epithelium. Evidence for control by autoregulation. Biocheniical Journal 136, 311319.
Baertschi, A. J. & Vallet, P. G. (1981). Osmosensitivity of the hepatic portal vein area and vasopressin release in rats. Journal of Physiology 315, 217230.
Baile, C. A. & Forbes, J. M. (1974). Control of feed intake and regulation of energy balance in ruminants. Physiological Reviews 54, 160214.
Bellinger, L. L. (1981). Commentary on ‘the current status of the hepatostatic theory of food intake control’. Appetite 2, 144145.
Bergman, E. N. (1990). Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiological Reviews 70, 567590.
Bergman, E. N., Roe, W. E. & Kon, K. (1966). Quantitative aspects of propionate metabolism and gluconeogenesis in sheep. American Journal of Physiology 211, 793799.
Burrin, D. G., Ferrell, C. L., Britton, R. A. & Bauer, M. (1990). Level of nutrition and visceral organ size and metabolic activity in sheep. British Journal of Nutrition 64, 439448.
Burrin, D. G., Ferrell, C. L., Eisemann, J. H., Britton, R. A. & Nienaber, J. A. (1989). Effect of level of nutrition on splanchnic blood flow and oxygen consumption in sheep. British Journal of Nutrition 62, 2334.
De Jong, A. (1981). Short- and long-term effects of eating on blood composition in free-feeding goats. Journal of Agricultural Science, Cambridge 96, 659668.
De Jong, A., Steffens, A. B. & De Ruiter, L. (1981). Effects of portal volatile Fatty acid infusions on meal patterns and blood composition in goats. Physiology and Behavior 27, 683689.
Demigné, C., Yacoub, C., Morand, C. & Rémésy, C. (1991). Interactions between propionate and amino acid metabolism in isolated sheep hepatocytes. British Journal of Nutrition 65, 301317.
Farningham, D. A. H. (1990). Effect of hepatic portal infusion of propionate or equivalent saline loads on food intake in sheep. Proceedings of the Nutrition Society 49, 221A.
Farningham, D. A. H. (1991). Synergism between cholecystokinin octapeptide and propionate in the control of food intake in ruminants. Regulatory Peptides 35, 236.
Grovum, W. L. & Bignell, W. W. (1989). Results refuting volatile fatty acids per se as signals of satiety in ruminants. Proceedings of the Nutrition Society 48, 3A.
Hungate, R. E. (1966). The Rumen and its Microbes, 1st ed. New York and London: Academic Press.
Koopmans, H. S. (1984). Hepatic control of food intake. Appetite 5, 127131.
Niijima, A. (1982). Glucose-sensitive afferent nerve fibres in the hepatic branch of the vagus nerve in the guinea-pig. Journal of Physiology 332, 315323.
Niijima, A. (1983). Glucose-sensitive afferent nerve fibers in the liver and their role in food intake and blood glucose regulation. Journal of the Autonomic Nervous System 9, 207220.
Novin, D., Robinson, K., Culbreth, L. A. & Tordoff, M. G. (1985). Is there a role for the liver in the control of food intake? American Journal of Clinical Nutrition 42, 10501062.
Novin, D., Sanderson, J. D. & Vanderweele, D. A. (1974). The effect of isotonic glucose on eating as a function of feeding condition and infusion site. Physiology and Behavior 13, 37.
Quigley, J. D. & Heitmann, R. N. (1991). Effects of propionate infusion and dietary energy on dry matter intake in sheep. Journal of Animal Science 69, 11781187.
Russek, M. (1963). Participation of hepatic glucoreceptors in the control of food intake. Nature 197, 7980.
Russek, M. (1981). Current status of the hepatostatic theory of food intake control. Appetite 2, 137143.
Tordoff, M. G., Tluczek, J. P. & Friedman, M. I. (1989). Effect of hepatic portal glucose concentration on food intake and metabolism. American Journal of Physiology 257, R1474 R1480.
Trinder, P. (1969). Determination of glucose in blood using glucose oxidase with an alternative oxygen acceptor. Annals of Clinical Biochemistry 6, 2427.
Weekes, T. E. C. & Webster, A. J. F. (1975). Metabolism of propionate in the tissues of the sheep gut. British Journal of Nutrition 33, 425438.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed