Skip to main content Accessibility help
×
Home

Reproducibility and relative validity of a FFQ to estimate the intake of fatty acids

  • Jaike Praagman (a1), Anda P. J. Adolphs (a1), Caroline T. M. van Rossum (a2), Ivonne Sluijs (a1), Yvonne T. van der Schouw (a1) and Joline W. J. Beulens (a1) (a3)...

Abstract

We investigated the validity and reproducibility of the FFQ used in the Dutch European Investigation of Cancer and Nutrition cohort, in order to rank subjects according to intakes of fatty acid classes and individual fatty acids. In total, 121 men and women (23–72 years) filled out three FFQ at 6-month intervals between 1991 and 1992. As a reference method, they filled out twelve monthly 24-h dietary recalls (24HDR) during the same year. Intra-class correlation coefficients for the FFQ showed moderate to good reproducibility across all fatty acids (classes and individual) in men (0·56–0·81) and women (0·57–0·83). In men, Spearman’s correlation coefficients (r s) for the FFQ compared with the 24HDR indicated moderate to good relative validity (r s=0·45–0·71) for all fatty acids, except for arachidonic acid and marine PUFA (r s<0·40). In women, relative validity was moderate to good for MUFA and trans-fatty acids (TFA) and the majority of SFA (r s=0·40–0·66), was fair for the short-chain SFA and lauric acid (r s=0·30–0·33) and was fair to moderate for PUFA (r s=0·22–0·47). Bland–Altman plots showed good agreement between the FFQ and 24HDR, and proportional bias for fatty acids with very low intakes. In conclusion, the FFQ showed good reproducibility for subject ranking based on intakes of fatty acids (classes and individual). The relative validity measures indicated that the FFQ is an adequate tool to rank subjects according to intakes of high-abundant fatty acids, but less for low-abundant fatty acids.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Reproducibility and relative validity of a FFQ to estimate the intake of fatty acids
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Reproducibility and relative validity of a FFQ to estimate the intake of fatty acids
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Reproducibility and relative validity of a FFQ to estimate the intake of fatty acids
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Y. T. van der Schouw, fax +31 88 756 8099, email y.t.vanderschouw@umcutrecht.nl

References

Hide All
1. Beulens, JW, Monninkhof, EM, Verschuren, WM, et al. (2010) Cohort profile: the EPIC-NL study. Int J Epidemiol 39, 11701178.
2. Ocke, MC, Bueno-de-Mesquita, HB, Goddijn, HE, et al. (1997) The Dutch EPIC food frequency questionnaire. I. Description of the questionnaire, and relative validity and reproducibility for food groups. Int J Epidemiol 26, Suppl. 1, S37S48.
3. Ocke, MC, Bueno-de-Mesquita, HB, Pols, MA, et al. (1997) The Dutch EPIC food frequency questionnaire. II. Relative validity and reproducibility for nutrients. Int J Epidemiol 26, Suppl. 1, S49S58.
4. Skeaff, CM & Miller, J (2009) Dietary fat and coronary heart disease: summary of evidence from prospective cohort and randomised controlled trials. Ann Nutr Metab 55, 173201.
5. Hu, FB, Stampfer, MJ, Manson, JE, et al. (1999) Dietary saturated fats and their food sources in relation to the risk of coronary heart disease in women. Am J Clin Nutr 70, 10011008.
6. Mensink, RP, Zock, PL, Kester, AD, et al. (2003) Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr 77, 11461155.
7. Broadfield, E, McKeever, T, Fogarty, A, et al. (2003) Measuring dietary fatty acid intake: validation of a food-frequency questionnaire against 7 d weighed records. Br J Nutr 90, 215220.
8. Jaceldo-Siegl, K, Knutsen, SF, Sabate, J, et al. (2010) Validation of nutrient intake using an FFQ and repeated 24 h recalls in black and white subjects of the Adventist Health Study-2 (AHS-2). Public Health Nutr 13, 812819.
9. Kabagambe, EK, Baylin, A, Allan, DA, et al. (2001) Application of the method of triads to evaluate the performance of food frequency questionnaires and biomarkers as indicators of long-term dietary intake. Am J Epidemiol 154, 11261135.
10. Lora, KR, Lewis, NM, Eskridge, KM, et al. (2010) Validity and reliability of an omega-3 fatty acid food frequency questionnaire for first-generation Midwestern Latinas. Nutr Res 30, 550557.
11. McNaughton, SA, Hughes, MC & Marks, GC (2007) Validation of a FFQ to estimate the intake of PUFA using plasma phospholipid fatty acids and weighed foods records. Br J Nutr 97, 561568.
12. Riboli, E, Elmstahl, S, Saracci, R, et al. (1997) The Malmo Food Study: validity of two dietary assessment methods for measuring nutrient intake. Int J Epidemiol 26, Suppl. 1, S161S173.
13. Segovia-Siapco, G, Singh, P, Jaceldo-Siegl, K, et al. (2007) Validation of a food-frequency questionnaire for measurement of nutrient intake in a dietary intervention study. Public Health Nutr 10, 177184.
14. Sullivan, BL, Brown, J, Williams, PG, et al. (2008) Dietary validation of a new Australian food-frequency questionnaire that estimates long-chain n-3 polyunsaturated fatty acids. Br J Nutr 99, 660666.
15. Wennberg, M, Vessby, B & Johansson, I (2009) Evaluation of relative intake of fatty acids according to the Northern Sweden FFQ with fatty acid levels in erythrocyte membranes as biomarkers. Public Health Nutr 12, 14771484.
16. Wolk, A, Ljung, H, Vessby, B, et al. (1998) Effect of additional questions about fat on the validity of fat estimates from a food frequency questionnaire. Study Group of MRS SWEA. Eur J Clin Nutr 52, 186192.
17. Cantwell, MM, Gibney, MJ, Cronin, D, et al. (2005) Development and validation of a food-frequency questionnaire for the determination of detailed fatty acid intakes. Public Health Nutr 8, 97107.
18. Willett, WC, Howe, GR & Kushi, LH (1997) Adjustment for total energy intake in epidemiologic studies. Am J Clin Nutr 65, 1220S1228S ; discussion 1229S–1231S.
19 Willett, W (1998) Nutritional Epidemiology. New York and Oxford: Oxford University Press.
20. Arab, L (2003) Biomarkers of fat and fatty acid intake. J Nutr 133, Suppl. 3, 925S932S.
21. Riboli, E (1992) Nutrition and cancer: background and rationale of the European Prospective Investigation into Cancer and Nutrition (EPIC). Ann Oncol 3, 783791.
22. Saadatian-Elahi, M, Slimani, N, Chajes, V, et al. (2009) Plasma phospholipid fatty acid profiles and their association with food intakes: results from a cross-sectional study within the European Prospective Investigation into Cancer and Nutrition. Am J Clin Nutr 89, 331346.
23. Collins, CE, Boggess, MM, Watson, JF, et al. (2014) Reproducibility and comparative validity of a food frequency questionnaire for Australian adults. Clin Nutr 33, 906914.
24. Hernandez-Avila, M, Romieu, I, Parra, S, et al. (1998) Validity and reproducibility of a food frequency questionnaire to assess dietary intake of women living in Mexico City. Salud Publica Mex 40, 133140.
25. Horn-Ross, PL, Lee, VS, Collins, CN, et al. (2008) Dietary assessment in the California Teachers Study: reproducibility and validity. Cancer Causes Control 19, 595603.
26. Laviolle, B, Froger-Bompas, C, Guillo, P, et al. (2005) Relative validity and reproducibility of a 14-item semi-quantitative food frequency questionnaire for cardiovascular prevention. Eur J Cardiovasc Prev Rehabil 12, 587595.
27. Filippi, AR, Amodio, E, Napoli, G, et al. (2014) The web-based ASSO-food frequency questionnaire for adolescents: relative and absolute reproducibility assessment. Nutr J 13, 119.
28. Lafay, L, Mennen, L, Basdevant, A, et al. (2000) Does energy intake underreporting involve all kinds of food or only specific food items? Results from the Fleurbaix Laventie Ville Sante (FLVS) study. Int J Obes Relat Metab Disord 24, 15001506.
29. Johnson, RK, Goran, MI & Poehlman, ET (1994) Correlates of over- and underreporting of energy intake in healthy older men and women. Am J Clin Nutr 59, 12861290.
30. Krebs-Smith, SM, Graubard, BI, Kahle, LL, et al. (2000) Low energy reporters vs others: a comparison of reported food intakes. Eur J Clin Nutr 54, 281287.
31. Livingstone, MB & Black, AE (2003) Markers of the validity of reported energy intake. J Nutr 133, Suppl. 3, 895S920S.
32. Ferrari, P, Slimani, N, Ciampi, A, et al. (2002) Evaluation of under- and overreporting of energy intake in the 24-hour diet recalls in the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr 5, 13291345.
33. Heitmann, BL (1993) The influence of fatness, weight change, slimming history and other lifestyle variables on diet reporting in Danish men and women aged 35–65 years. Int J Obes Relat Metab Disord 17, 329336.
34. Lafay, L, Basdevant, A, Charles, MA, et al. (1997) Determinants and nature of dietary underreporting in a free-living population: the Fleurbaix Laventie Ville Sante (FLVS) Study. Int J Obes Relat Metab Disord 21, 567573.
35. Tooze, JA, Subar, AF, Thompson, FE, et al. (2004) Psychosocial predictors of energy underreporting in a large doubly labeled water study. Am J Clin Nutr 79, 795804.
36. Subar, AF, Thompson, FE, Kipnis, V, et al. (2001) Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: the Eating at America’s Table Study. Am J Epidemiol 154, 10891099.
37. Ingram, MA, Stonehouse, W, Russell, KG, et al. (2012) The New Zealand PUFA semiquantitative food frequency questionnaire is a valid and reliable tool to assess PUFA intakes in healthy New Zealand adults. J Nutr 142, 19681974.
38. Sullivan, BL, Williams, PG & Meyer, BJ (2006) Biomarker validation of a long-chain omega-3 polyunsaturated fatty acid food frequency questionnaire. Lipids 41, 845850.
39. Swierk, M, Williams, PG, Wilcox, J, et al. (2011) Validation of an Australian electronic food frequency questionnaire to measure polyunsaturated fatty acid intake. Nutrition 27, 641646.
40. Zhang, B, Wang, P, Chen, CG, et al. (2010) Validation of an FFQ to estimate the intake of fatty acids using erythrocyte membrane fatty acids and multiple 3d dietary records. Public Health Nutr 13, 15461552.
41. Wallin, A, Di Giuseppe, D, Burgaz, A, et al. (2014) Validity of food frequency questionnaire-based estimates of long-term long-chain n-3 polyunsaturated fatty acid intake. Eur J Nutr 53, 549555.
42. Lepsch, J, Vaz, JS, Moreira, JD, et al. (2015) Food frequency questionnaire as an indicator of the serum composition of essential n-3 and n-6 polyunsaturated fatty acids in early pregnancy, according to body mass index. J Hum Nutr Diet 28, 8594.
43. Serdula, M, Byers, T, Coates, R, et al. (1992) Assessing consumption of high-fat foods: the effect of grouping foods into single questions. Epidemiology 3, 503508.

Keywords

Type Description Title
WORD
Supplementary materials

Praagman supplementary material
Tables S1-S2 and Figures S1-S44

 Word (1.5 MB)
1.5 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed