Skip to main content Accessibility help
×
Home

Relative efficacy of casein or soya protein combined with palm or safflower-seed oil on hyperuricaemia in rats

  • Hui-Chen Lo (a1), Yao-Horng Wang (a2), Hue-Ying Chiou (a3), Shan-Hu Lai (a4) and Yu Yang (a5)...

Abstract

Diets that ameliorate the adverse effects of uric acid (UA) on renal damage deserve attention. The effects of casein or soya protein combined with palm or safflower-seed oil on various serum parameters and renal histology were investigated on hyperuricaemic rats. Male Wistar rats administered with oxonic acid and UA to induce hyperuricaemia were fed with casein or soya protein plus palm- or safflower-seed oil-supplemented diets. Normal rats and hyperuricaemic rats with or without allopurinol treatment (150 mg/l in drinking water) were fed with casein plus maize oil-supplemented diets. After 8 weeks, allopurinol treatment and soya protein plus safflower-seed oil-supplemented diet significantly decreased serum UA in hyperuricaemic rats (one-way ANOVA; P < 0·05). In addition, soya protein and casein attenuated hyperuricaemia-induced decreases in serum albumin and insulin, respectively (two-way ANOVA; P < 0·05). Safflower-seed oil significantly decreased serum TAG and UA, whereas palm oil significantly increased serum cholesterol, TAG, blood urea N and creatinine. However, soya protein significantly decreased renal NO and nitrotyrosine and palm oil significantly decreased renal nitrotyrosine, TNF-α and interferon-γ and increased renal transforming growth factor-β. Casein with safflower-seed oil significantly attenuated renal tubulointerstitial nephritis, crystals and fibrosis. Comparing casein v. soya protein combined with palm or safflower-seed oil, the results support that casein with safflower-seed oil may be effective in attenuating hyperuricaemia-associated renal damage, while soya protein with safflower-seed oil may be beneficial in lowering serum UA and TAG.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Relative efficacy of casein or soya protein combined with palm or safflower-seed oil on hyperuricaemia in rats
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Relative efficacy of casein or soya protein combined with palm or safflower-seed oil on hyperuricaemia in rats
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Relative efficacy of casein or soya protein combined with palm or safflower-seed oil on hyperuricaemia in rats
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Yu Yang, fax +886 4722 8289, email 2219@cch.org.tw

References

Hide All
1 Chang, HY, Pan, WH, Yeh, WT, et al. (2001) Hyperuricemia and gout in Taiwan: results from the Nutritional and Health Survey in Taiwan (1993–96). J Rheumatol 28, 16401646.
2 Lee, MS, Lin, SC, Chang, HY, et al. (2005) High prevalence of hyperuricemia in elderly Taiwanese. Asia Pac J Clin Nutr 14, 285292.
3 Huang, CC, Peng, MC, Tsai, WC, et al. (2005) The serum uric acid and related cardiovascular risk factors in south Taiwan. Southeast Asian J Trop Med Public Health 36, 259264.
4 Menè, P & Punzo, G (2008) Uric acid: bystander or culprit in hypertension and progressive renal disease? J Hypertens 25, 20852092.
5 Mazzali, M, Hughes, J, Kim, YG, et al. (2001) Elevated uric acid increases blood pressure in the rat by a novel crystal-independent mechanism. Hypertension 38, 11011106.
6 Johnson, RJ, Titte, S, Cade, JR, et al. (2005) Uric acid, evolution and primitive cultures. Semin Nephrol 25, 38.
7 Erdogan, D, Gullu, H, Caliskan, M, et al. (2005) Relationship of serum uric acid to measures of endothelial function and atherosclerosis in healthy adults. Int J Clin Pract 59, 12761282.
8 Kang, DH & Nakagawa, T (2005) Uric acid and chronic renal disease: possible implication of hyperuricemia on progression of renal disease. Semin Nephrol 25, 4349.
9 Bellinghieri, G, Santoro, D & Savica, V (2005) Pharmacological treatment of acute and chronic hyperuricemia in kidney diseased patients. Contrib Nephrol 147, 149160.
10 Ejaz, AA, Mu, W, Kang, DH, et al. (2007) Could uric acid have a role in acute renal failure? Clin J Am Soc Nephrol 2, 1621.
11 Nakagawa, T, Mazzali, M, Kang, DH, et al. (2003) Hyperuricemia causes glomerular hypertrophy in the rat. Am J Nephrol 23, 27.
12 Sánchez-Lozada, LG, Tapia, E, Santamaría, J, et al. (2005) Mild hyperuricemia induces vasoconstriction and maintains glomerular hypertension in normal and remnant kidney rats. Kidney Int 67, 237247.
13 Iseki, K, Ikemiya, Y, Inoue, T, et al. (2004) Significance of hyperuricemia as a risk factor for developing ESRD in a screened cohort. Am J Kidney Dis 44, 642650.
14 Kutzing, MK & Firestein, BL (2008) Altered uric acid levels and disease states. J Pharmacol Exp Ther 324, 17.
15 Peixoto, MR, Monego, ET, Jardim, PC, et al. (2001) Diet and medication in the treatment of hyperuricemia in hypertensive patients. Arq Bras Cardiol 76, 463472.
16 Johnson, RJ & Rideout, BA (2004) Uric acid and diet – insights into the epidemic of cardiovascular disease. N Engl J Med 350, 10711073.
17 Fam, AG (2002) Gout, diet, and the insulin resistance syndrome. J Rheumatol 29, 13501355.
18 Fair, DE, Ogborn, MR, Weiler, HA, et al. (2004) Dietary soy protein attenuates renal disease progression after 1 and 3 weeks in Han:SPRD-cy weanling rats. J Nutr 134, 15041507.
19 Aguila, MB, Pinheiro, AR, Aquino, JC, et al. (2005) Different edible oil beneficial effects (canola oil, fish oil, palm oil, olive oil, and soybean oil) on spontaneously hypertensive rat glomerular enlargement and glomeruli number. Prostaglandins Other Lipid Mediat 76, 7485.
20 Bernstein, AM, Treyzon, L & Li, Z (2007) Are high-protein, vegetable-based diets safe for kidney function? A review of the literature. J Am Diet Assoc 107, 644650.
21 Shih, W, Hines, WH & Neilson, EG (1988) Effects of cyclosporine A on the development of immune-mediated interstitial nephritis. Kidney Int 33, 11131118.
22 Bayorh, MA, Abukhalaf, IK & Ganafa, AA (2005) Effect of palm oil on blood pressure, endothelial function and oxidative stress. Asia Pac J Clin Nutr 14, 325339.
23 Cosge, B, Gurbuz, B & Kiralan, M (2007) Oil content and fatty acid composition of some safflower (Carthamus tinctorius L.) varieties sown in spring and winter. Int J Natural Eng Sci 1, 1115.
24 Avram, Z & Krishnan, E (2008) Hyperuricaemia – where nephrology meets rheumatology. Rheumatology 47, 960964.
25 Khosla, UM, Zharikov, S, Finch, JL, et al. (2005) Hyperuricemia induces endothelial dysfunction. Kidney Int 67, 17391742.
26 Dalbeth, N & Stamp, L (2007) Allopurinol dosing in renal impairment: walking the tightrope between adequate urate lowering and adverse events. Semin Dial 20, 391395.
27 Markel, A (2005) Allopurinol-induced DRESS syndrome. Isr Med Assoc J 7, 656660.
28 Ogborn, MR, Nitschmann, E, Weiler, HA, et al. (2000) Modification of polycystic kidney disease and fatty acid status by soy protein diet. Kidney Int 57, 159166.
29 Tovar, AR, Murguía, F, Cruz, C, et al. (2002) A soy protein diet alters hepatic lipid metabolism gene expression and reduces serum lipids and renal fibrogenic cytokines in rats with chronic nephrotic syndrome. J Nutr 132, 25622569.
30 Azadbakht, L, Atabak, S & Esmaillzadeh, A (2008) Soy protein intake, cardiorenal indices, and C-reactive protein in type 2 diabetes with nephropathy: a longitudinal randomized clinical trial. Diabetes Care 31, 648654.
31 Teixeira, SR, Tappenden, KA, Carson, L, et al. (2004) Isolated soy protein consumption reduces urinary albumin excretion and improves the serum lipid profile in men with type 2 diabetes mellitus and nephropathy. J Nutr 134, 18741880.
32 Azadbakht, L, Shakerhosseini, R, Atabak, S, et al. (2003) Beneficiary effect of dietary soy protein on lowering plasma levels of lipid and improving kidney function in type II diabetes with nephropathy. Eur J Clin Nutr 57, 12921294.
33 Chen, ST, Yang, HY, Huang, HY, et al. (2006) Effects of various soya protein hydrolysates on lipid profile, blood pressure and renal function in five-sixths nephrectomized rats. Br J Nutr 96, 435441.
34 Trujillo, J, Cruz, C, Tovar, A, et al. (2008) Renoprotective mechanisms of soy protein intake in the obese Zucker rat. Am J Physiol Renal Physiol 295, F1574F1582.
35 Ganafa, AA, Socci, RR, Eatman, D, et al. (2002) Effect of palm oil on oxidative stress-induced hypertension in Sprague–Dawley rats. Am J Hypertens 15, 725731.
36 Edem, DO (2002) Palm oil: biochemical, physiological, nutritional, hematological, and toxicological aspects: a review. Plant Foods Hum Nutr 57, 319341.
37 Leong, XF, Aishah, A, Nor Aini, U, et al. (2008) Heated palm oil causes rise in blood pressure and cardiac changes in heart muscle in experimental rats. Arch Med Res 39, 567572.
38 Ogborn, MR, Nitschmann, E, Bankovic-Calic, N, et al. (2002) Dietary flax oil reduces renal injury, oxidized LDL content, and tissue n-6/n-3 FA ratio in experimental polycystic kidney disease. Lipids 37, 10591065.
39 Ogborn, MR, Nitschmann, E, Goldberg, A, et al. (2008) Dietary conjugated linoleic acid renal benefits and possible toxicity vary with isomer, dose and gender in rat polycystic kidney disease. Lipids 43, 783791.

Keywords

Relative efficacy of casein or soya protein combined with palm or safflower-seed oil on hyperuricaemia in rats

  • Hui-Chen Lo (a1), Yao-Horng Wang (a2), Hue-Ying Chiou (a3), Shan-Hu Lai (a4) and Yu Yang (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed