Skip to main content Accessibility help
×
Home

Predictors of postprandial glycaemia, insulinaemia and insulin resistance in adolescents

  • Ryan A. Williams (a1), Karah J. Dring (a1), Simon B. Cooper (a1), John G. Morris (a1), Caroline Sunderland (a1) and Mary E. Nevill (a1)...

Abstract

Postprandial glycaemia and insulinaemia are important risk factors for type 2 diabetes. The prevalence of insulin resistance in adolescents is increasing, but it is unknown how adolescent participant characteristics such as BMI, waist circumference, fitness and maturity offset may explain responses to a standard meal. The aim of the present study was to examine how such participant characteristics affect the postprandial glycaemic and insulinaemic responses to an ecologically valid mixed meal. Data from the control trials of three separate randomised, crossover experiments were pooled, resulting in a total of 108 participants (fifty-two boys, fifty-six girls; aged 12·5 (SD 0·6) years; BMI 19·05 (SD 2·66) kg/m2). A fasting blood sample was taken for the calculation of fasting insulin resistance, using the homoeostatic model assessment of insulin resistance (HOMA-IR). Further capillary blood samples were taken before and 30, 60 and 120 min after a standardised lunch, providing 1·5 g/kg body mass of carbohydrate, for the quantification of blood glucose and plasma insulin total AUC (tAUC). Hierarchical multiple linear regression demonstrated significant predictors for plasma insulin tAUC were waist circumference, physical fitness and HOMA-IR (F (3,98) = 36·78, P < 0·001, adjusted R 2 = 0·515). The variance in blood glucose tAUC was not significantly explained by the predictors used (F (7,94) = 1·44, P = 0·198). Significant predictors for HOMA-IR were BMI and maturity offset (F (2,102) = 14·06, P < 0·001, adjusted R 2 = 0·021). In summary, the key findings of the study are that waist circumference, followed by physical fitness, best explained the insulinaemic response to an ecologically valid standardised meal in adolescents. This has important behavioural consequences because these variables can be modified.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Predictors of postprandial glycaemia, insulinaemia and insulin resistance in adolescents
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Predictors of postprandial glycaemia, insulinaemia and insulin resistance in adolescents
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Predictors of postprandial glycaemia, insulinaemia and insulin resistance in adolescents
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

*Corresponding author: Dr Simon B. Cooper, email simon.cooper@ntu.ac.uk

References

Hide All
1. Reaven, G (2005) Insulin resistance, type 2 diabetes mellitus, and cardiovascular disease: the end of the beginning. Circulation 112, 30303032.
2. Tagi, VM, Giannini, C & Chiarelli, F (2019) Insulin resistance in children. Front Endocrinol 10, 342.
3. Laitinen, T, Laitinen, TT, Pahkala, K, et al. (2012) Ideal cardiovascular health in childhood and cardiometabolic outcomes in adulthood: the cardiovascular risk in young finns study. Circulation 125, 19711978.
4. Steinberger, J, Daniels, SR, Eckel, RH, et al. (2009) Progress and challenges in metabolic syndrome in children and adolescents. A scientific statement from the American Heart Association atherosclerosis, hypertension, and obesity in the young committee of the council on cardiovascular disease in the young. Circulation 119, 628647.
5. DiNicolantonio, JJ, Bhutani, J, OKeefe, JH, et al. (2017) Postprandial insulin assay as the earliest biomarker for diagnosing pre-diabetes, type 2 diabetes and increased cardiovascular risk. Open Heart 4, e000656.
6. Haffner, SM (1998) The importance of hyperglycemia in the nonfasting state to the development of cardiovascular disease. Endocr Rev 19, 583592.
7. Lautt, WW (2007) Postprandial insulin resistance as an early predictor of cardiovascular risk. Ther Clin Risk Manag 3, 761770.
8. Tuomilehto, J, Lindström, J, Eriksson, JG, et al. (2001) Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med 344, 13431350.
9. Arslanian, SA (1996) Suprasongsin C insulin sensitivity, lipids and body composition in childhood: is “syndrome X” present? J Clin Endocrinol Metab 81, 10581062.
10. Arslanian, SA (2000) Type 2 diabetes mellitus in children: pathophysiology and risk factors. J Pediatr Endocrinol Metab 13, 13851394.
11. Cooper, SB, Dring, KJ, Morris, JG, et al. (2017) Sex differences in adolescents’ glycaemic and insulinaemic responses to high and low glycaemic index breakfasts: a randomised control trial. Br J Nutr 117, 541547.
12. Kelsey, MM & Zeitler, PS (2016) Insulin resistance of puberty. Curr Diab Rep 16, 64.
13. Reinehr, T (2013) Type 2 diabetes mellitus in children and adolescents. World J Diabetes 4, 270281.
14. Aune, D, Norat, T, Leitzmann, M, et al. (2015) Physical activity and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis. Eur J Epidemiol 30, 529542.
15. Ekelund, U, Luan, JA, Sherar, LB, et al. (2012) Moderate to vigorous physical activity and sedentary time and cardiometabolic risk factors in children and adolescents. J Am Med Assoc 307, 704712.
16. Abdul-Ghani, MA, Matsuda, M, Balas, B, et al. (2007) Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care 30, 8994.
17. Muniyappa, R & Madan, R (2000) Assessing insulin sensitivity, resistance in humans. In NCBI Bookshelf Endotext [Feingold, KR, B Anawalt and A Boyce, editors]. South Dartmouth, MA: MDtext.com, Inc.
18. Cockcroft, EJ, Williams, CA, Tomlinson, OW, et al. (2015) High intensity interval exercise is an effective alternative to moderate intensity exercise for improving glucose tolerance and insulin sensitivity in adolescent boys. J Sci Med Sport 18, 720724.
19. Cockcroft, EJ, Williams, CA, Weaver, H, et al. (2017) Acute exercise and insulin sensitivity in boys: a time-course study. Int J Sports Med 38, 967974.
20. Dring, KJ, Cooper, SB, Morris, JG, et al. (2019) Cytokine, glycemic, and insulinemic responses to an acute bout of games-based activity in adolescents. Scand J Med Sci Sport 29, 597605.
21. Dring, KJ, Cooper, SB, Williams, RA, et al. (2020) Effect of exercise duration on postprandial glycaemic and insulinaemic responses in adolescents. Nutrients 12, 754.
22. Short, KR, Pratt, LV & Teague, AM (2018) A single exercise session increases insulin sensitivity in normal weight and overweight/obese adolescents. Pediatr Diabetes 19, 10501057.
23. World Health Organisation (2008) Waist Circumference and Waist–Hip Ratio. Report of a WHO Expert Consultation. Geneva: WHO.
24. Dring, KJ, Cooper, SB, Morris, JG, et al. (2019) Multi-stage fitness test performance, VO2 peak and adiposity: effect on risk factors for cardio-metabolic disease in adolescents. Front Physiol 10, 629.
25. Fraser, BJ, Blizzard, L, Schmidt, MD, et al. (2018) Childhood cardiorespiratory fitness, muscular fitness and adult measures of glucose homeostasis. J Sci Med Sport 21, 935940.
26. Haapala, EA, Wiklund, P, Lintu, N, et al. (2019) Cardiorespiratory fitness, physical activity, and insulin resistance in children. Med Sci Sports Exerc 52, 11441152.
27. Zaqout, M, Michels, N, Bammann, K, et al. (2016) Influence of physical fitness on cardio-metabolic risk factors in European children: the IDEFICS study. Int J Obes 40, 11191125.
28. LaMonte, MJ, Barlow, CE, Jurca, R, et al. (2005) Cardiorespiratory fitness is inversely associated with the incidence of metabolic syndrome: a prospective study of men and women. Circulation 112, 505512.
29. Moore, SA, McKay, HA, Macdonald, H, et al. (2015) Enhancing a somatic maturity prediction model. Med Sci Sports Exerc 47, 17551764.
30. Cole, TJ, Bellizzi, MC, Flegal, KM, et al. (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. Br Med J 320, 12401243.
31. Ramsbottom, R, Brewer, J & Williams, C (1988) A progressive shuttle run test to estimate maximal oxygen uptake. Br J Sports Med 22, 141144.
32. Brouns, F, Bjorck, I, Frayn, KN, et al. (2005) Glycaemic index methodology. Nutr Res Rev 18, 145171.
33. Wolever, TMS, Jenkins, DJA, et al. (1991) The glycemic index: methodology and clinical implications. Am J Clin Nutr 54, 846–54.
34. Wolever, TM & Jenkins, DJ (1986) The use of the glycemic index in predicting the blood glucose response to mixed meals. Am J Clin Nutr 43, 167172.
35. Matthews, DR, Hosker, JP, Rudenski, AS, et al. (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412419.
36. Shashaj, B, Luciano, R, Contoli, B, et al. (2016) Reference ranges of HOMA-IR in normal-weight and obese young caucasians. Acta Diabetol 53, 251260.
37. VanVoorhis, CW & Morgan, BL (2007) Understanding power and rules of thumb for determining sample sizes. Tutor Quant Methods Psychol 3, 4350.
38. Bates, D, Mächler, M, Bolker, B, et al. (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67, 148.
39. Henderson, M, Benedetti, A, Barnett, TA, et al. (2016) Influence of adiposity, physical activity, fitness, and screen time on insulin dynamics over 2 years in children. JAMA Pediatr 170, 227235.
40. Klein, S, Allison, DB, Heymsfield, SB, et al. (2007) Waist circumference and cardiometabolic risk: a consensus statement from Shaping America’s Health. Diabetes Care 30, 16471652.
41. Ramos, JS, Dalleck, LC, Borrani, F, et al. (2017) Cardiorespiratory fitness is positively associated with increased pancreatic beta cell function independent of fatness in individuals with the metabolic syndrome: fitness versus fatness. J Sci Med Sport 20, 4549.
42. Lee, SJ & Kim, YM (2013) Effects of exercise alone on insulin sensitivity and glucose tolerance in obese youth. Diabetes Metab J 37, 225232.
43. Bird, SR & Hawley, JA (2017) Update on the effects of physical activity on insulin sensitivity in humans. BMJ Open Sport Exerc Med 2, e000143.
44. Keshel, T & Coker, R (2015) Exercise training and insulin resistance: a current review. J Obes Weight Loss Ther 5, S5003.
45. Cockcroft, EJ, Williams, CA, Jackman, SR, et al. (2017) Agreement and reliability of fasted and oral glucose tolerance test-derived indices of insulin sensitivity and beta cell function in boys. Int J Sports Med 38, 411417.
46. Barseem, NF & Helwa, MA (2015) Homeostatic model assessment of insulin resistance as a predictor of metabolic syndrome: consequences of obesity in children and adolescents. Egypt Pediatr Assoc Gaz 63, 1924.
47. Silva, LR, Cavaglieri, C, Lopes, WA, et al. (2014) Endothelial wall thickness, cardiorespiratory fitness and inflammatory markers in obese and non-obese adolescents. Brazilian J Phys Ther 18, 4755.
48. Metcalf, BS, Hosking, J, Henley, WE, et al. (2015) Physical activity attenuates the mid-adolescent peak in insulin resistance but by late adolescence the effect is lost: a longitudinal study with annual measures from 9–16 years (EarlyBird 66). Diabetologia 58, 26992708.
49. Laye, MJ, Nielsen, MB, Hansen, LS, et al. (2015) Physical activity enhances metabolic fitness independently of cardiorespiratory fitness in marathon runners. Dis Markers 2015, 806418.
50. Mirwald, RL, Baxter-Jones, ADG, Bailey, DA, et al. (2002) An assessment of maturity from anthropometric measurements. Med Sci Sports Exerc 34, 689694.

Keywords

Predictors of postprandial glycaemia, insulinaemia and insulin resistance in adolescents

  • Ryan A. Williams (a1), Karah J. Dring (a1), Simon B. Cooper (a1), John G. Morris (a1), Caroline Sunderland (a1) and Mary E. Nevill (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.