Skip to main content Accessibility help
×
Home

Postprandial nutrient-sensing and metabolic responses after partial dietary fishmeal replacement by soyabean meal in turbot (Scophthalmus maximus L.)

  • Dandan Xu (a1), Gen He (a1), Kangsen Mai (a1), Huihui Zhou (a1), Wei Xu (a1) and Fei Song (a1)...

Abstract

In this study, we chose a carnivorous fish, turbot (Scophthalmus maximus L.), to examine its nutrient-sensing and metabolic responses after ingestion of diets with fishmeal (FM), or 45 % of FM replaced by soyabean meal (34·6 % dry diet) balanced with or without essential amino acids (EAA) to match the amino acid profile of FM diet for 30 d. After a 1-month feeding trial, fish growth, feed efficiency and nutrient retention were markedly reduced by soyabean meal-incorporated (SMI) diets. Compared with the FM diet, SMI led to a reduction of postprandial influx of free amino acids, hypoactivated target of rapamycin signalling and a hyperactivated amino acid response pathway after refeeding, a status associated with reduced protein synthesis, impaired postprandial glycolysis and lipogenesis. These differential effects were not ameliorated by matching an EAA profile of soyabean meal to that of the FM diet through dietary amino acid supplementation. Therefore, this study demonstrated that the FM diet and SMI diets led to distinct nutrient-sensing responses, which in turn modulated metabolism and determined the utilisation efficiency of diets. Our results provide a new molecular explanation for the role of nutrient sensing in the inferior performance of aquafeeds in which FM is replaced by soyabean meal.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Postprandial nutrient-sensing and metabolic responses after partial dietary fishmeal replacement by soyabean meal in turbot (Scophthalmus maximus L.)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Postprandial nutrient-sensing and metabolic responses after partial dietary fishmeal replacement by soyabean meal in turbot (Scophthalmus maximus L.)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Postprandial nutrient-sensing and metabolic responses after partial dietary fishmeal replacement by soyabean meal in turbot (Scophthalmus maximus L.)
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: G. He, fax +86 532 8203 1627, email hegen@ouc.edu.cn

References

Hide All
1. Naylor, RL, Hardy, RW, Bureau, DP, et al. (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci U S A 106, 1510315110.
2. Hardy, RW (2010) Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquacult Res 41, 770776.
3. Boirie, Y, Dangin, M, Gachon, P, et al. (1997) Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc Natl Acad Sci U S A 94, 1493014935.
4. Bos, C, Metges, CC, Gaudichon, C, et al. (2003) Postprandial kinetics of dietary amino acids are the main determinant of their metabolism after soy or milk protein ingestion in humans. J Nutr 133, 13081315.
5. Frühbeck, G (1998) Protein metabolism: slow and fast dietary proteins. Nature 391, 843845.
6. Kimball, SR & Jefferson, LS (2002) Control of protein synthesis by amino acid availability. Curr Opin Clin Nutr Metab Care 5, 6367.
7. Ma, XM & Blenis, J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10, 307318.
8. Laplante, M & Sabatini, DM (2012) mTOR signaling in growth control and disease. Cell 149, 274293.
9. Jewell, JL, Russell, RC & Guan, KL (2013) Amino acid signalling upstream of mTOR. Nat Rev Mol Cell Biol 14, 133139.
10. Kilberg, MS, Pan, YX, Chen, H, et al. (2005) Nutritional control of gene expression: how mammalian cells respond to amino acid limitation. Annu Rev Nutr 25, 5985.
11. Guo, F & Cavener, DR (2007) The GCN2 eIF2alpha kinase regulates fatty-acid homeostasis in the liver during deprivation of an essential amino acid. Cell Metab 5, 103114.
12. Yan, L & Lamb, RF (2012) Amino acid sensing and regulation of mTORC1. Semin Cell Dev Biol 23, 621625.
13. Dai, W, Panserat, S, Plagnes-Juan, E, et al. (2015) Amino acids attenuate insulin action on gluconeogenesis and promote fatty acid biosynthesis via mTORC1 signaling pathway in trout hepatocytes. Cell Physiol Biochem 36, 10841100.
14. Lansard, M, Panserat, S, Plagnes-Juan, E, et al. (2011) L-leucine, L-methionine, and L-lysine are involved in the regulation of intermediary metabolism-related gene expression in rainbow trout hepatocytes. J Nutr 141, 7580.
15. Lansard, M, Panserat, S, Plagnes-Juan, E, et al. (2010) Integration of insulin and amino acid signals that regulate hepatic metabolism-related gene expression in rainbow trout: role of TOR. Amino Acids 39, 801810.
16. Lee, J, Cho, S, Park, S, et al. (2003) Dietary protein requirement for young turbot (Scophthalmus maximus L.). Aquacult Nutr 9, 283286.
17. Gatlin, DM, Barrows, FT, Brown, P, et al. (2007) Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquacult Res 38, 551579.
18. Seiliez, I, Panserat, S, Lansard, M, et al. (2011) Dietary carbohydrate-to-protein ratio affects TOR signaling and metabolism-related gene expression in the liver and muscle of rainbow trout after a single meal. Am J Physiol Regul Integr Comp Physiol 300, 733743.
19. Liu, Y, He, G, Wang, Q, et al. (2014) Hydroxyproline supplementation on the performances of high plant protein source based diets in turbot (Scophthalmus maximus L.). Aquaculture 433, 476480.
20. Mente, E, Deguara, S, Santos, MB, et al. (2003) White muscle free amino acid concentrations following feeding a maize gluten dietary protein in Atlantic salmon (Salmo salar L.). Aquaculture 225, 133147.
21. Zuo, R, Ai, Q, Mai, K, et al. (2012) Effects of dietary n-3 highly unsaturated fatty acids on growth, nonspecific immunity, expression of some immune related genes and disease resistance of large yellow croaker (Larmichthys crocea) following natural infestation of parasites (Cryptocaryon irritans). Fish Shellfish Immunol 32, 249258.
22. Romano, A, Barca, A, Storelli, C, et al. (2014) Teleost fish models in membrane transport research: the PEPT1 (SLC15A1) H+–oligopeptide transporter as a case study. J Physiol 592, 881897.
23. Bröer, S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88, 249286.
24. Cunha, I, Galante-Oliveira, S, Rocha, E, et al. (2013) Dynamics of PPARs, fatty acid metabolism genes and lipid classes in eggs and early larvae of a teleost. Comp Biochem Physiol B Biochem Mol Biol 164, 247258.
25. Wang, Q, He, G, Mai, K, et al. (2015) Fishmeal replacement by mixed plant proteins and maggot meal on growth performance, target of rapamycin signalling and metabolism in juvenile turbot (Scophthalmus maximus L.). Aquacult Nutr (Epublication ahead of print version 14 February 2015).
26. Dai, W, Panserat, S, Mennigen, JA, et al. (2013) Post-prandial regulation of hepatic glucokinase and lipogenesis requires the activation of TORC1 signalling in rainbow trout (Oncorhynchus mykiss). J Exp Biol 216, 44834492.
27. Regost, C, Arzel, J & Kaushik, S (1999) Partial or total replacement of fish meal by corn gluten meal in diet for turbot (Psetta maxima). Aquaculture 180, 99117.
28. Day, O & GonzÁlez, H (2000) Soybean protein concentrate as a protein source for turbot Scophthalmus maximus L. Aquacult Nutr 6, 221228.
29. Verri, T, Romano, A, Barca, A, et al. (2010) Transport of di- and tripeptides in teleost fish intestine. Aquacult Res 41, 641653.
30. Terova, G, Corà, S, Verri, T, et al. (2009) Impact of feed availability on PepT1 mRNA expression levels in sea bass (Dicentrarchus labrax). Aquaculture 294, 288299.
31. Margheritis, E, Terova, G, Cinquetti, R, et al. (2013) Functional properties of a newly cloned fish ortholog of the neutral amino acid transporter B0AT1 (SLC6A19). Comp Biochem Physiol A Mol Integr Physiol 166, 285292.
32. Yang, J, Tan, Q, Zhu, W, et al. (2014) Cloning and molecular characterization of cationic amino acid transporter y+LAT1 in grass carp (Ctenopharyngodon idellus). Fish Physiol Biochem 40, 93104.
33. Bröer, A, Juelich, T, Vanslambrouck, JM, et al. (2011) Impaired nutrient signaling and body weight control in a Na+ neutral amino acid cotransporter (Slc6a19)-deficient mouse. J Biol Chem 286, 2663826651.
34. Hyde, R, Cwiklinski, EL, MacAulay, K, et al. (2007) Distinct sensor pathways in the hierarchical control of SNAT2, a putative amino acid transceptor, by amino acid availability. J Biol Chem 282, 1978819798.
35. Hyde, R, Christie, G, Litherland, G, et al. (2001) Subcellular localization and adaptive up-regulation of the System A (SAT2) amino acid transporter in skeletal-muscle cells and adipocytes. Biochem J 355, 563568.
36. Karlsson, A, Eliason, EJ, Mydland, LT, et al. (2006) Postprandial changes in plasma free amino acid levels obtained simultaneously from the hepatic portal vein and the dorsal aorta in rainbow trout (Oncorhynchus mykiss). J Exp Biol 209, 48854894.
37. Vary, TC & Lynch, CJ (2006) Meal feeding enhances formation of eIF4F in skeletal muscle: role of increased eIF4E availability and eIF4G phosphorylation. Am J Physiol Endocrinol Metab 290, 631642.
38. Berge, GE, Lied, E & Espe, M (1994) Absorption and incorporation of dietary free and protein bound (U14C)-lysine in Atlantic cod (Gadus morhua). Comp Biochem Physiol A Mol Integr Physiol 109, 681688.
39. Kilberg, MS, Shan, J & Su, N (2009) ATF4-dependent transcription mediates signaling of amino acid limitation. Trends Endocrinol Metab 20, 436443.
40. Dickinson, JM & Rasmussen, BB (2011) Essential amino acid sensing, signaling, and transport in the regulation of human muscle protein metabolism. Curr Opin Clin Nutr Metab Care 14, 8388.
41. Seiliez, I, Gabillard, JC, Skiba-Cassy, S, et al. (2008) An in vivo and in vitro assessment of TOR signaling cascade in rainbow trout (Oncorhynchus mykiss). Am J Physiol Regul Integr Comp Physiol 295, 329335.
42. Sayano, T, Kawakami, Y, Kusada, W, et al. (2013) L-serine deficiency caused by genetic Phgdh deletion leads to robust induction of 4E-BP1 and subsequent repression of translation initiation in the developing central nervous system. FEBS J 280, 15021517.
43. Yecies, JL & Manning, BD (2011) Transcriptional control of cellular metabolism by mTOR signaling. Cancer Res 71, 28152820.
44. Dibble, CC & Manning, BD (2013) Signal integration by mTORC1 coordinates nutrient input with biosynthetic output. Nat Cell Biol 15, 555564.
45. Lansard, M, Panserat, S, Plagnes-Juan, E, et al. (2010) Integration of insulin and amino acid signals that regulate hepatic metabolism-related gene expression in rainbow trout: role of TOR. Amino Acids 39, 801810.
46. Dias, J, Alvarez, M, Arzel, J, et al. (2005) Dietary protein source affects lipid metabolism in the European seabass (Dicentrarchus labrax). Comp Biochem Physiol A Mol Integr Physiol 142, 1931.
47. Deng, J, Mai, K, Ai, Q, et al. (2006) Effects of replacing fish meal with soy protein concentrate on feed intake and growth of juvenile Japanese flounder, Paralichthys olivaceus. Aquaculture 258, 503513.
48. Ballantyne, J (2001) Amino acid metabolism. Fish Physiol 20, 77107.

Keywords

Type Description Title
WORD
Supplementary materials

Xu supplementary material
Table S1-S3 and Figure S1

 Word (98 KB)
98 KB

Postprandial nutrient-sensing and metabolic responses after partial dietary fishmeal replacement by soyabean meal in turbot (Scophthalmus maximus L.)

  • Dandan Xu (a1), Gen He (a1), Kangsen Mai (a1), Huihui Zhou (a1), Wei Xu (a1) and Fei Song (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed