Skip to main content Accessibility help
×
Home

Postprandial glycaemic and lipaemic responses to chronic coffee consumption may be modulated by CYP1A2 polymorphisms

  • Tracey M. Robertson (a1), Michael N. Clifford (a1), Simon Penson (a2), Peter Williams (a3) and M. Denise Robertson (a1)...

Abstract

There is much epidemiological evidence suggesting a reduced risk of development of type 2 diabetes (T2D) in habitual coffee drinkers, however to date there have been few longer-term interventions, directly examining the effects of coffee intake on glucose and lipid metabolism. Previous studies may be confounded by inter-individual variation in caffeine metabolism. Specifically, the rs762551 SNP in the CYP1A2 gene has been demonstrated to influence caffeine metabolism, with carriers of the C allele considered to be of a ‘slow’ metaboliser phenotype. This study investigated the effects of regular coffee intake on markers of glucose and lipid metabolism in coffee-naïve individuals, with novel analysis by rs762551 genotype. Participants were randomised to either a coffee group (n 19) who consumed four cups/d instant coffee for 12 weeks or a control group (n 8) who remained coffee/caffeine free. Venous blood samples were taken pre- and post-intervention. Primary analysis revealed no significant differences between groups. Analysis of the coffee group by genotype revealed several differences. Before coffee intake, the AC genotype (‘slow’ caffeine metabolisers, n 9) displayed higher baseline glucose and NEFA than the AA genotype (‘fast’ caffeine metabolisers, n 10, P<0·05). Post-intervention, reduced postprandial glycaemia and reduced NEFA suppression were observed in the AC genotype, with the opposite result observed in the AA genotype (P<0·05). These observed differences between genotypes warrant further investigation and indicate there may be no one-size-fits-all recommendation with regard to coffee drinking and T2D risk.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Postprandial glycaemic and lipaemic responses to chronic coffee consumption may be modulated by CYP1A2 polymorphisms
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Postprandial glycaemic and lipaemic responses to chronic coffee consumption may be modulated by CYP1A2 polymorphisms
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Postprandial glycaemic and lipaemic responses to chronic coffee consumption may be modulated by CYP1A2 polymorphisms
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Dr M. D. Robertson, fax +44 1483 688501, email m.robertson@surrey.ac.uk

References

Hide All
1. World Health Organization (2016) Global Report on Diabetes. Geneva: WHO.
2. Odegaard, AO, Pereira, MA, Koh, W-P, et al. (2008) Coffee, tea, and incident type 2 diabetes: the Singapore Chinese Health Study. Am J Clin Nutr 88, 979985.
3. Bhupathiraju, SN, Pan, A, Malik, VS, et al. (2013) Caffeinated and caffeine-free beverages and risk of type 2 diabetes. Am J Clin Nutr 97, 155166.
4. Tuomilehto, J, Hu, G, Bidel, S, et al. (2004) Coffee consumption and risk of type 2 diabetes mellitus among middle-aged Finnish men and women. JAMA 291, 12131219.
5. Salazar-Martinez, E, Willett, WC, Ascherio, A, et al. (2004) Coffee consumption and risk for type 2 diabetes mellitus. Ann Intern Med 140, 18.
6. van Dam, RM, Willett, WC, Manson, JE, et al. (2006) Coffee, caffeine, and risk of type 2 diabetes: a prospective cohort study in younger and middle-aged U.S. women. Diabetes Care 29, 398403.
7. Louie, JCY, Atkinson, F, Petocz, P, et al. (2008) Delayed effects of coffee, tea and sucrose on postprandial glycemia in lean, young, healthy adults. Asia Pac J Clin Nutr 17, 657662.
8. Robertson, TM, Clifford, MN, Penson, S, et al. (2015) A single serving of caffeinated coffee impairs postprandial glucose metabolism in overweight men. Br J Nutr 114, 12181225.
9. Gavrieli, A, Karfopoulou, E, Kardatou, E, et al. (2013) Effect of different amounts of coffee on dietary intake and appetite of normal-weight and overweight/obese individuals. Obesity (Silver Spring) 21, 11271132.
10. Kempf, K, Herder, C, Erlund, I, et al. (2010) Effects of coffee consumption on subclinical inflammation and other risk factors for type 2 diabetes: a clinical trial. Am J Clin Nutr 91, 950957.
11. van Dam, RM, Pasman, WJ & Verhoef, P (2004) Effects of coffee consumption on fasting blood glucose and insulin concentrations: randomized controlled trials in healthy volunteers. Diabetes Care 27, 29902992.
12. Wedick, NM, Brennan, AM, Sun, Q, et al. (2011) Effects of caffeinated and decaffeinated coffee on biological risk factors for type 2 diabetes: a randomized controlled trial. Nutr J 10, 93.
13. Ohnaka, K, Ikeda, M, Maki, T, et al. (2012) Effects of 16-week consumption of caffeinated and decaffeinated instant coffee on glucose metabolism in a randomized controlled trial. J Nutr Metab 2012, article ID 207426.
14. Yang, A, Palmer, AA & de Wit, H (2010) Genetics of caffeine consumption and responses to caffeine. Psychopharmacology (Berl) 211, 245257.
15. Cornelis, MC, El-Sohemy, A, Kabagambe, EK, et al. (2006) Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA 295, 11351141.
16. Palatini, P, Ceolotto, G, Ragazzo, F, et al. (2009) CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension. J Hypertens 27, 15941601.
17. Guessous, I, Dobrinas, M, Kutalik, Z, et al. (2012) Caffeine intake and CYP1A2 variants associated with high caffeine intake protect non-smokers from hypertension. Hum Mol Genet 21, 32833292.
18. Palatini, P, Benetti, E, Mos, L, et al. (2015) Association of coffee consumption and CYP1A2 polymorphism with risk of impaired fasting glucose in hypertensive patients. Eur J Epidemiol 30, 209217.
19. Mills, CE, Oruna-Concha, MJ, Mottram, DS, et al. (2013) The effect of processing on chlorogenic acid content of commercially available coffee. Food Chem 141, 33353340.
20. Crozier, TWM, Stalmach, A, Lean, MEJ, et al. (2012) Espresso coffees, caffeine and chlorogenic acid intake: potential health implications. Food Funct 3, 3033.
21. McCusker, RR, Goldberger, BA & Cone, EJ (2003) Caffeine content of specialty coffees. J Anal Toxicol 27, 520522.
22. QSRMedia UK (2015) Coffee market propped up by growth of pods, says Mintel. http://qsrmedia.co.uk/research/news/coffee-market-propped-growth-pods-says-mintel(accessed August 2017).
23. Brouns, F, Bjorck, I, Frayn, KN, et al. (2005) Glycaemic index methodology. Nutr Res Rev 18, 145171.
24. Schoenfeld, D (2014) Harvard statistical power calculator for parallel trials. http://hedwig.mgh.harvard.edu/sample_size/js/js_parallel_quant.html (accessed November 2017).
25. Matsuda, M & DeFronzo, RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22, 14621470.
26. Couillard, C, Bergeron, N, Prud’homme, D, et al. (1999) Gender difference in postprandial lipemia : importance of visceral adipose tissue accumulation. Arterioscler Thromb Vasc Biol 19, 24482455.
27. Laws, A, Hoen, HM, Selby, JV, et al. (1997) Differences in insulin suppression of free fatty acid levels by gender and glucose tolerance status: relation to plasma triglyceride and apolipoprotein B concentrations. Arterioscler Thromb Vasc Biol 17, 6471.
28. Sumner, AE, Kushner, H, Lakota, CA, et al. (1996) Gender differences in insulin-induced free fatty acid suppression: studies in an African American population. Lipids 31, Suppl., S275S278.
29. SNPedia (2015) rs762551. http://www.snpedia.com/index.php?title=Rs762551&oldid=1083057 (accessed November 2017).
30. Ghotbi, R, Christensen, M, Roh, H-K, et al. (2007) Comparisons of CYP1A2 genetic polymorphisms, enzyme activity and the genotype-phenotype relationship in Swedes and Koreans. Eur J Clin Pharmacol 63, 537546.
31. Gunes, A, Ozbey, G, Vural, EH, et al. (2009) Influence of genetic polymorphisms, smoking, gender and age on CYP1A2 activity in a Turkish population. Pharmacogenomics 10, 769778.
32. Djordjevic, N, Ghotbi, R, Jankovic, S, et al. (2010) Induction of CYP1A2 by heavy coffee consumption is associated with the CYP1A2 -163C>A polymorphism. Eur J Clin Pharmacol 66, 697703.
33. Lampe, JW, King, IB, Li, S, et al. (2000) Brassica vegetables increase and apiaceous vegetables decrease cytochrome P450 1A2 activity in humans: changes in caffeine metabolite ratios in response to controlled vegetable diets. Carcinogenesis 21, 11571162.
34. Bruce, DG, Chisholm, DJ, Storlien, LH, et al. (1988) Physiological importance of deficiency in early prandial insulin secretion in non-insulin-dependent diabetes. Diabetes 37, 736744.
35. Park, S, Jang, JS & Hong, SM (2007) Long-term consumption of caffeine improves glucose homeostasis by enhancing insulinotropic action through islet insulin/insulin-like growth factor 1 signaling in diabetic rats. Metabolism 56, 599607.
36. Kanat, M, Mari, A, Norton, L, et al. (2012) Distinct β-cell defects in impaired fasting glucose and impaired glucose tolerance. Diabetes 61, 447453.
37. Farah, A, Monteiro, M, Donangelo, CM, et al. (2008) Chlorogenic acids from green coffee extract are highly bioavailable in humans. J Nutr 138, 23092315.
38. Teekachunhatean, S, Tosri, N, Rojanasthien, N, et al. (2013) Pharmacokinetics of caffeine following a single administration of coffee enema versus oral coffee consumption in healthy male subjects. ISRN Pharmacol 2013, 147238.
39. Del Rio, D, Stalmach, A, Calani, L, et al. (2010) Bioavailability of coffee chlorogenic acids and green tea flavan-3-ols. Nutrients 2, 820833.
40. Cai, L, Ma, D, Zhang, Y, et al. (2012) The effect of coffee consumption on serum lipids: a meta-analysis of randomized controlled trials. Eur J Clin Nutr 66, 872877.
41. Jee, SH, He, J, Appel, LJ, et al. (2001) Coffee consumption and serum lipids: a meta-analysis of randomized controlled clinical trials. Am J Epidemiol 153, 353362.
42. Weusten-Van der Wouw, MP, Katan, MB, Viani, R, et al. (1994) Identity of the cholesterol-raising factor from boiled coffee and its effects on liver function enzymes. J Lipid Res 35, 721733.
43. Urgert, R & Katan, MB (1996) The cholesterol-raising factor from coffee beans. J R Soc Med 89, 618623.
44. Gross, G, Jaccaud, E & Huggett, AC (1997) Analysis of the content of the diterpenes cafestol and kahweol in coffee brews. Food Chem Toxicol 35, 547554.
45. Robinson, LE, Savani, S, Battram, DS, et al. (2004) Caffeine ingestion before an oral glucose tolerance test impairs blood glucose management in men with type 2 diabetes. J Nutr 134, 25282533.
46. Johnston, KL, Clifford, MN & Morgan, LM (2003) Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr 78, 728733.
47. Battram, DS, Graham, TE, Richter, EA, et al. (2005) The effect of caffeine on glucose kinetics in humans – influence of adrenaline. J Physiol 569, 347355.
48. van Dijk, AE, Olthof, MR, Meeuse, JC, et al. (2009) Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care 32, 10231025.
49. Welsch, CA, Lachance, PA & Wasserman, BP (1989) Dietary phenolic compounds: inhibition of Na+-dependent D-glucose uptake in rat intestinal brush border membrane vesicles. J Nutr 119, 16981704.
50. Arion, WJ, Canfield, WK, Ramos, FC, et al. (1997) Chlorogenic acid and hydroxynitrobenzaldehyde: new inhibitors of hepatic glucose 6-phosphatase. Arch Biochem Biophys 339, 315322.
51. Caillon, L, Hoffmann, ARF, Botz, A, et al. (2016) Molecular structure, membrane interactions, and toxicity of the islet amyloid polypeptide in type 2 diabetes mellitus. J Diabetes Res 2016, article ID 5639875.
52. Cheng, B, Liu, X, Gong, H, et al. (2011) Coffee components inhibit amyloid formation of human Islet amyloid polypeptide in vitro: possible link between coffee consumption and diabetes mellitus. J Agric Food Chem 59, 1314713155.
53. Platt, DE, Ghassibe-Sabbagh, M, Salameh, P, et al. (2015) Caffeine impact on metabolic syndrome components is modulated by a CYP1A2 variant. Ann Nutr Metab 68, 111.
54. Kohno, M, Tajima, O, Uezono, K, et al. (2013) Cytochrome P450 1A2 polymorphisms, coffee consumption and impaired glucose metabolism in Japanese men. Endocrinol Metab Syndr 2, 119.

Keywords

Type Description Title
WORD
Supplementary materials

Robertson et al. supplementary material 1
Robertson et al. supplementary material

 Word (33 KB)
33 KB

Postprandial glycaemic and lipaemic responses to chronic coffee consumption may be modulated by CYP1A2 polymorphisms

  • Tracey M. Robertson (a1), Michael N. Clifford (a1), Simon Penson (a2), Peter Williams (a3) and M. Denise Robertson (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed