Skip to main content Accessibility help
×
Home

Polyamines in human breast milk for preterm and term infants

  • J. Plaza-Zamora (a1), M. Sabater-Molina (a1), M. Rodríguez-Palmero (a2), M. Rivero (a2), V. Bosch (a3), J. M. Nadal (a3), S. Zamora (a1) and E. Larqué (a1)...

Abstract

Maternal milk is the first source of exogenous polyamines for the newborn. Polyamines modulate gut maturation in neonates, but no studies are available on polyamine concentration in human milk of preterm babies, even though they could be important for their immature gut. The present study aimed to determine polyamine concentration in human breast milk of mothers with preterm or term infants during the first month of lactation. Human milk samples were obtained during the first month of lactation from twenty-seven mothers with preterm babies and twelve mothers with babies born at term. The polyamine concentration in human milk was quantified by HPLC. During the first month of lactation, the total polyamine concentration was significantly higher in preterm milk than in term milk samples (7590 (sd 4990) v. 4660 (sd 4830) nmol/l, respectively (P =0·034)), as well as individual polyamine concentrations. Polyamine concentration in mature milk for preterm babies was significantly higher than that in mature milk for babies at term, and a similar trend was observed in colostrum and transition human milk. The spermidine/spermine ratio was higher in transition milk in preterm v. term samples, while in mature milk, the ratio was significantly lower in preterm than in term babies. In conclusion, the polyamine concentration was significantly higher in human milk for preterm than for term infants. This and the different spermidine/spermine ratios could influence the gut development of premature babies.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Polyamines in human breast milk for preterm and term infants
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Polyamines in human breast milk for preterm and term infants
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Polyamines in human breast milk for preterm and term infants
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Elvira Larqué, fax +34 868 883963, email elvirada@um.es

References

Hide All
1Pegg, AE & McCann, PP (1982) Polyamine metabolism and function. Am J Physiol 243, C212C221.
2Seiler, N & Heby, O (1988) Regulation of cellular polyamines in mammals. Acta Biochim Biophys Hung 23, 136.
3McCormack, SA & Johnson, LR (1991) Role of polyamines in gastrointestinal mucosal growth. Am J Physiol 260, G795G806.
4Larqué, E, Sabater-Molina, M & Zamora, S (2007) Biological significance of dietary polyamines. Nutrition 23, 8795.
5Bardocz, S, Duguid, TJ, Brown, DS, et al. (1995) The importance of dietary polyamines in cell regeneration and growth. Br J Nutr 73, 819828.
6Milovic, V (2001) Polyamines in the gut lumen: bioavailability and biodistribution. Eur J Gastroenterol Hepatol 13, 10211025.
7Sabater-Molina, M, Larqué, E, Torrella, F, et al. (2009) Effects of dietary polyamines at physiologic doses in early-weaned piglets. Nutrition 25, 940946.
8Sanguansermsri, J, Gyorgy, P & Zilliken, F (1974) Polyamines in human and cow's milk. Am J Clin Nutr 27, 859865.
9Pollack, PF, Koldovsky, O & Nishioka, K (1992) Polyamines in human and rat milk and infant formulas. Am J Clin Nutr 56, 371375.
10Romain, N, Dandrifosse, G, Jeusette, F, et al. (1992) Polyamine concentration in rat milk and food, human milk, and infant formulas. Pediatr Res 32, 5863.
11Löser, C (2000) Polyamines in human and animal milk. Br J Nutr 84, S55S58.
12Dorhout, B, Van Beusekom, CM, Huisman, M, et al. (1996) Estimation of twenty-four hour polyamine intake from mature human milk. J Pediatr Gastroenterol Nutr 23, 298302.
13Buts, JP (1996) Polyamines in milk. Ann Nestle 54, 98104.
14Buts, JP, Keyser, N, Raedemaeker, L, et al. (1995) Polyamine profiles in human milk, infant artificial formulas, and semi-elemental diets. J Pediatr Gastroenterol Nutr 21, 4449.
15Peulen, O, Dewé, W, Dandrifosse, G, et al. (1998) The relationship between spermine content of human milk during the first postnatal month and allergy in children. Public Health Nutr 1, 181184.
16Motyl, T, Ploszaj, T, Wojtasik, A, et al. (1995) Polyamines in cow's and sow's milk. Comp Biochem Physiol B: Biochem Mol Biol 111, 427433.
17Duchén, K & Thorell, L (1999) Nucleotide and polyamine levels in colostrum and mature milk in relation to maternal atopy and atopic development in the children. Acta Paediatr 88, 13381343.
18Gross, SJ, Geller, J & Tomarelli, RM (1981) Composition of breast milk from mothers of preterm infants. Pediatrics 68, 490493.
19Moruzzi, G, Barbiroli, B & Caldarera, CM (1968) Polyamines and nucleic acid metabolism in chick embryo. Incorporation of labelled precursors into nucleic acids of subcellular fractions and polyribosomal patterns. Biochem J 107, 609613.
20Russell, D & Snyder, SH (1968) Amine synthesis in rapidly growing tissues: ornithine decarboxylase activity in regenerating rat liver, chick embryo, and various tumors. Proc Natl Acad Sci U S A 60, 14201427.
21Dandrifosse, G, Peulen, O, El Khefif, N, et al. (2000) Are milk polyamines preventive agents against food allergy? Proc Nutr Soc 9, 8186.
22Pérez-Cano, FJ, González-Castro, A, Castellote, C, et al. (2010) Influence of breast milk polyamines on suckling rat immune system maturation. Dev Comp Immunol 34, 210218.
23Gómez-Gallego, C, Collado, MC, Ilo, T, et al. (2012) Infant formula supplemented with polyamines alters the intestinal microbiota in neonatal BALB/cOlaHsd mice. J Nutr Biochem 23, 15081513.
24Lemons, JA, Moye, L, Hall, D, et al. (1982) Differences in the composition of preterm and term human milk during early lactation. Pediatr Res 16, 113117.
25Kovács, A, Funke, S, Marosvölgyi, T, et al. (2005) Fatty acids in early human milk after preterm and full-term delivery. J Pediatr Gastroenterol Nutr 41, 454459.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed