Skip to main content Accessibility help
×
Home

Phyto-oestrogen levels in foods: the design and construction of the VENUS database

  • Mairead Kiely (a1), Marian Faughnan (a2), Kristiina Wähälä (a3), Henny Brants (a4) and Angela Mulligan (a5)...

Extract

The objective of the Vegetal Estrogens in Nutrition and the Skeleton (VENUS) project was to evaluate existing data on dietary exposure to compounds with oestrogenic and anti-oestrogenic effects present in plant foods as constituents or contaminants, and to identify and disseminate in vitro and in vivo methodologies to analyse the effects of such compounds on bone. To permit the assessment of exposure to isoflavones in European populations (Italy, the UK, Ireland, The Netherlands), the VENUS database of phyto-oestrogen levels in foods was established. Data on the isoflavone (genistein and daidzein) content of 791 foods, including almost 300 foods commonly consumed in Europe, were collected. Levels of coumestrol, formononetin and biochanin A in a limited number of foods were also included. Lignan levels (secoisolariciresinol and matairesinol) in 158 foods were incorporated into the database, which also contains information on the references sourced for the compositional data, on the analytical methods used by each author and on the number of foods analysed in each reference. The VENUS database was constructed in Microsoft® Access 2000, which is widely available as part of Microsoft® Office Professional. This paper outlines the procedures used for the selection and evaluation of existing literature data for incorporation into the database. In addition, the design of the database is described, along with the data entry and quality control procedures used in its construction. Limitations of the data are discussed and guidelines for its use are provided.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Phyto-oestrogen levels in foods: the design and construction of the VENUS database
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Phyto-oestrogen levels in foods: the design and construction of the VENUS database
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Phyto-oestrogen levels in foods: the design and construction of the VENUS database
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr M. Kiely, fax +353 21 4270244, email m.kiely@ucc.ie

References

Hide All
Adlercreutz, H (1995) Phyto-oestrogens: epidemiology and a possible role in cancer protection. Environmental Health Perspectives 103, 103112.
Allred, CD, Allred, KF, Ju, YH, Virant, SM & Helferich, WG (2001) Soy diets containing varying amounts of genistein stimulate growth of estrogen-dependent (MCF-7) tumours in a dosedependent manner. Cancer Research 61, 50458050.
Araujo, JMA, Santos, CJC & Moriera, MA (1995) Isoflavones content in soybean cultivars. Arqives Biology Tecnology 38, 725730.
Barnes, S (2003) Phyto-oestrogens and osteoporosis: what is a safe dose? British Journal of Nutrition 89, Suppl. 1, S101–S108.
Choi, J-S, Kwon, T-W & Kim, J-S (1996) Isoflavone contents in some varieties of soybean. Foods and Biotechnology 5, 167169.
Coward, L, Barnes, NC, Setchell, KDR & Barnes, S (1993) Genistein, daidzein and their (β-glucoside conjugates: antitumour isoflavones in soybean foods from American and Asian diets. Journal of Agriculture and Food Chemistry 41, 19611967.
Coward, L, Kirk, M, Albin, N & Barnes, S (1996) Analysis of plasma isoflavones by reversed-phase HPLC–multiple reaction ion monitoring-mass spectrometry. Clinica Chimica Acta 247, 121142.
De Kleijn, MJJvan der Schouw, YT, Wilson, PWFAdlercreutz, H, Mazur, W, Grobbee, DE & Jacques, PF (2001) Intake of dietary phyto-oestrogens is low in postmenopausal women in the United States: The Framingham Study. Journal of Nutrition 131, 18261832.
Dwyer, AT, Goldin, BR, Saul, N, Gualteri, A, Barakat, S & Adlercreutz, H (1994) Tofu and soy drinks contain phyto-oestrogens. Journal of the American Dietetic Association 94, 739743.
Elakovich, SD & Hampton, JM (1984) Analysis of coumestrol, a phyto-oestrogen, in alfalfa tablets sold for human consumption. Journal of Agriculture and Food Chemistry 32, 173175.
Eldridge, AC (1982) Determination of isoflavones in soybean flours, protein concentrates and isolates. Journal of Agriculture and Food Chemistry 30, 353355.
Eldridge, AC & Kwolek, WF (1983) Soybean isoflavones: effect of environment and variety on composition. Journal of Agriculture and Food Chemistry 31, 394396.
Franke, AA, Custer, LJ, Cerna, CM & Narala, K (1995) Rapid HPLC analysis of dietary phyto-oestrogens from legumes and from human urine. Proceedings of the Society for Experimental Biology and Medicine 208, 1826.
Franke, AA, Custer, LJ, Wang, W & Shi, CY (1998) HPLC analysis of isoflavonoids and other phenolic agents from foods and from human fluids. Proceedings of the Society for Experimental Biology and Medicine 217, 263273.
Franke, AA, Hankin, JH, Yu, MC, Maskarinee, G, Low, S-H & Custer, LJ (1999) Isoflavone levels in soy foods consumed by multiethnic populations in Singapore and Hawaii. Journal of Agriculture and Food Chemistry 47, 977986.
Fukutake, M, Takahashi, M, Ishida, K, Kawamura, H, Sugimura, T & Wakabayashi, K (1996) Quantification of genistein and genistin in soybeans and soybean products. Food and Chemical Toxicology 34, 457461.
Holland, B, Welch, AA, Unwin, ID, Buss, DH, Paul, AA & Southgate, DAT (1995) McCance & Widdowson's The Composition of Foods Fifth Edition. Royal Society of Chemistry and Ministry of Agriculture, Fisheries and Food. London: HMSO.
Horn-Ross, PL, John, EM, Lee, M, Stewart, SL, Koo, J, Sakoda, LC, Shiau, AC, Goldstein, J, Davis, P & Perez-Stable, EJ (2001) Phyto-oestrogen consumption and breast cancer risk in a multiethnic population: the Bay Area Breast Cancer Study. American Journal of Epidemiology 154, 434441.
Jones, AE, Price, KR & Fenwick, GR (1989) Development and application of a HPLC method for the analysis of phyto-oestrogens. Journal of Science Food and Agriculture 46, 357364.
Liggins, J, Bluck, LJ, Runswick, S, Atkinson, C, Coward, WA & Bingham, SA (2000 a) Daidzein and geni stein contents of vegetables. British Journal of Nutrition 84, 717725.
Liggins, J, Bluck, LJ, Runswick, S, Atkinson, C, Coward, WA & Bingham, SA (2000 b) Daidzein and genistein content of fruits and nuts. Journal of Nutritional Biochemistry 11, 326331.
Mazur, W (1998) Phyto-oestrogen content in foods. Baillière's Clinical Endocrinology and Metabolism 12, 729743.
Mazur, W & Adlercreutz, H (2000) Overview of naturally occurring endocrine-active substances in the human diet in relation to human health. Nutrition 16, 654687.
Mazur, WM, Duke, JA, Wahala, K, Rasku, S & Adlercreutz, H (1998) Isoflavonoids and lignans in legumes: nutritional and health aspects in humans. Journal of Nutritional Biochemistry 9, 193200.
Mazur, W, Fotsis, T, Wähälä, K, Ojala, S, Salakka, A & Adlercreutz, H (1996) Isotope dilution gas chromatographic–mass spectrometric method for the determination of isoflavonoids, coumestrol and lignans in food samples. Analytical Biochemistry 233, 169180.
Mazur, WM, Wähälä, K, Rasku, S, Salakka, A, Hase, T & Adlercreutz, H (1998) Lignan and isoflavonoid concentrations in tea and coffee. British Journal of Nutrition 79, 3745.
Mei, J, Yeung, SS & Kung, AW (2001) High dietary phyto-oestrogen intake is associated with higher bone mineral density in postmenopausal but not premenopausal women. Journal of Clinical Endocrinology and Metabolism 86, 52175221.
Morton, M, Arisaka, O, Miyake, A & Evans, B (1999) Analysis of phyto-oestrogens by gas chromatography–mass spectrometry. Environmental Toxicology and Pharmacology 7, 221225.
Mullner, C & Sontag, G (1999) Determination of some phyto-oestrogens in soybeans and their processed products with HPLC and coulometric electrode array detection. Fresenius Journal of Analytical Chemistry 364, 261265.
Murphy, PA (1982) Phyto-oestrogen content of processed soybean products. Food Technology January, 6064.
Murphy, PA, Song, T, Buseman, G & Barua, K (1997) Isoflavones in soy-based infant formulas. Journal of Agriculture and Food Chemistry 45, 46354638.
Murphy, PA, Song, T, Buseman, G, Barua, K, Beecher, GR, Trainer, D & Holden, J (1999) Isoflavones in retail and institutional soy foods. Journal of Agriculture and Food Chemistry 47, 26972704.
Nguyenle, T, Wang, E & Cheung, AP (1995) An investigation on the extraction and concentration of isoflavones in soy-based products. Journal of Pharmaceutical and Biomedical Analysis 14, 221232.
Padgette, SR, Taylor, NB, Nida, DL, Bailey, MR, MacDonald, J, Holden, LR & Fuchs, RL (1996) The composition of glyphosate-tolerant soybean seeds is equivalent to that of conventional soybeans. Journal of Nutrition 126, 702716.
Pettersson, H & Kiessling, K-H (1984) Liquid chromatographic determination of the plant oestrogens coumestrol and isoflavones in animal feed. Journal of the Official Association of Analytical Chemists 67, 503506.
Riboli, E & Norat, T (2001) Cancer prevention and diet: opportunities in Europe. Public Health Nutrition 4, 475484.
Sirtori, CR (2001) Risks and benefits of soy phyto-oestrogens in cardiovascular diseases, cancer, climacteric symptoms and osteoporosis. Drug Safety 24, 665682.
Valtueña, S, Cashman, K, Robins, SP, Cassidy, A, Kardinaal, A & Branca, F (2003) Investigating the role of natural phyto-oestrogens on bone health in postmenopausal women. British Journal of Nutrition 89, Suppl. 1, S87–S99.
Van Erp-Baart, AMJBrants, HAMKiely, M, Mulligan, A, Turrini, A, Sermoneta, C, Kilkkinen, A & Valsta, LM (2001) Isoflavone intake in different European countries: the Vegetal Estrogens in Nutrition and the Skeleton approach. Annals of Nutrition and Metabolism 45, 217234 Abstr.
Van Erp-Baart, AMJBrants, HAMKiely, M, Mulligan, A, Turrini, A, Sermoneta, C, Kilkkinen, A & Valsta, LM (2003) Isoflavone intake in four different European countries: the Vegetal Estrogens in Nutrition and the Skeleton approach. British Journal of Nutrition 89, Suppl. 1, S25–S30.
Wakai, K, Egami, I, Kato, K, Kawamura, T, Tamakoshi, A, Lin, Y, Nakayama, T, Wada, M & Ohno, Y (1999) Dietary intake and sources of isoflavones among Japanese. Nutrition and Cancer 33, 139145.
Wang, G, Kuan, SS, Francis, OJ, Ware, GM & Carman, AS (1990) A simplified HPLC method for the determination of phyto-oestrogens in soybean and its processed products. Journal of Agriculture and Food Chemistry 38, 185190.
Wang, H-J & Murphy, PA (1994 a) Isoflavone composition of American and Japanese soybeans in Iowa: effects of variety, crop year and location. Journal of Agriculture and Food Chemistry 42, 16741677.
Wang, H-J & Murphy, PA (1994 b) Isoflavone content in commercial soybean foods. Journal of Agriculture and Food Chemistry 42, 16661673.
Wang, H-J & Murphy, PA (1996) Mass balance study of isoflavones during soybean processing. Journal of Agriculture and Food Chemistry 44, 23772383.
Xu, X, Wang, H-J, Murphy, PA, Cook, L & Hendrich, S (1994) Daidzein is a more bioavailable soymilk isoflavone than is genistein in adult women. Journal of Nutrition 124, 825832.

Keywords

Phyto-oestrogen levels in foods: the design and construction of the VENUS database

  • Mairead Kiely (a1), Marian Faughnan (a2), Kristiina Wähälä (a3), Henny Brants (a4) and Angela Mulligan (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed