Skip to main content Accessibility help
×
Home

Patterns of beverage consumption and risk of CHD among Mexican adults

  • Berenice Rivera-Paredez (a1), Paloma Muñoz-Aguirre (a2), Leticia Torres-Ibarra (a2), Paula Ramírez (a1), Rubí Hernández-López (a3), Elizabeth Barrios (a3), Leith León-Maldonado (a4), Edgar Denova-Gutiérrez (a5), Mario Flores (a5), Eduardo Salazar-Martínez (a2) and Jorge Salmerón (a1) (a2)...

Abstract

CHD is becoming an increasing priority worldwide, as it is one of the main causes of death in low- and middle-income countries lately. This study aims to evaluate the association between beverage consumption patterns and the risk of CHD among Mexican adult population. We performed a cross-sectional analysis using data from 6640 adults participating in the Health Workers’ Cohort Study. Factor analysis was performed to identify beverage patterns using sex-specific Framingham prediction algorithms to estimate CHD risk. The prevalence of moderate to high CHD risk was 17·8 %. We identified four major beverage consumption patterns, which were categorised as alcohol, coffee/tea, soft drinks and low-fat milk. We observed a lower risk of CHD (OR=0·61; 95 % CI 0·46, 0·80; and OR=0·58; 95 % CI 0·43, 0·79, respectively) among participants in the upper quintile of alcohol or low-fat milk consumption compared with those in the bottom quintile. In contrast, a higher consumption of soft drinks was positively associated with CHD risk (OR=1·64; 95 % CI 1·21, 2·20) when compared with other extreme quintiles. Finally, coffee/tea consumption was not significantly associated with CHD risk. Our findings suggest that a beverage pattern characterised by a higher intake of sugar-sweetened beverages may be associated with an increased risk of CHD among the Mexican adult population, whereas patterns of moderate alcohol intake and low-fat milk may be associated with a reduced risk.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Patterns of beverage consumption and risk of CHD among Mexican adults
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Patterns of beverage consumption and risk of CHD among Mexican adults
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Patterns of beverage consumption and risk of CHD among Mexican adults
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: P. Muñoz-Aguirre, email pmz.aguirre@gmail.com

References

Hide All
1. Roth, GA, Huffman, MD, Moran, AE, et al. (2015) Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation 132, 16671678.
2. World Health Organization (2014) Global status report on noncommunicable diseases, 2014. http://www.who.int/nmh/publications/ncd-status-report-2014/en/ (accessed August 2016).
3. Institute for Health Metrics and Evaluation (2013) Global burden of disease in Mexico, 2013. http://www.healthdata.org/mexico (accessed August 2016).
4. Eaton, CB (2005) Traditional and emerging risk factors for cardiovascular disease. Prim Care 32, 963976.
5. Gutiérrez, JP, Rivera-Dommarco, J, Shamah-Levy, T, et al. (2012) Encuesta Nacional de Salud y Nutrición 2012. Resultados Nacionales. Cuernavaca: Instituto Nacional de Salud Pública.
6. Kromhout, D, Menotti, A, Kesteloot, H, et al. (2002) Prevention of coronary heart disease by diet and lifestyle: evidence from prospective cross-cultural, cohort, and intervention studies. Circulation 105, 893898.
7. Zhang, Y & Hu, G (2012) Dietary pattern, lifestyle factors, and cardiovascular diseases. Curr Nutr Rep 1, 6472.
8. Djoussé, L, Lee, IM, Buring, JE, et al. (2009) Alcohol consumption and risk of cardiovascular disease and death in women: potential mediating mechanisms. Circulation 120, 237244.
9. Zhang, X-Y, Shu, L, Si, C-J, et al. (2015) Dietary patterns, alcohol consumption and risk of coronary heart disease in adults: a meta-analysis. Nutrients 7, 65826605.
10. Zheng, YL, Lian, F, Shi, Q, et al. (2015) Alcohol intake and associated risk of major cardiovascular outcomes in women compared with men: a systematic review and meta-analysis of prospective observational studies. BMC Public Health 15, 773.
11. O’Keefe, JH, Bybee, KA & Lavie, CJ (2007) Alcohol and cardiovascular health: the razor-sharp double-edged sword. J Am Coll Cardiol 50, 10091014.
12. Huang, C, Huang, J, Tian, Y, et al. (2014) Sugar sweetened beverages consumption and risk of coronary heart disease: a meta-analysis of prospective studies. Atherosclerosis 234, 1116.
13. Fung, TT, Malik, V, Rexrode, KM, et al. (2009) Sweetened beverage consumption and risk of coronary heart disease in women. Am J Clin Nutr 89, 10371042.
14. Malik, VS, Popkin, BM, Bray, GA, et al. (2010) Sugar-sweetened beverages, obesity, type 2 diabetes mellitus, and cardiovascular disease risk. Circulation 121, 13561364.
15. Denova-Gutiérrez, E, Talavera, JO, Huitrón-Bravo, G, et al. (2010) Sweetened beverage consumption and increased risk of metabolic syndrome in Mexican adults. Public Health Nutr 13, 835842.
16. Barquera, S, Hernandez, L, Tolentino, ML, et al. (2008) Energy intake from beverages is increasing in Mexican adolescents and adults. J Nutr 138, 24542461.
17. Stern, D, Piernas, C, Barquera, S, et al. (2014) Caloric beverages were major source of energy among children and adults in Mexico, 1999–2012. J Nutr 144, 949956.
18. Hu, FB (2002) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13, 39.
19. Denova-Gutiérrez, E, Flores, YN, Gallegos-Carrillo, K, et al. (2016) Health workers cohort study: methods and study design. Salud Publica Mex 58, 708716.
20. Rosner, B (1983) Percentage points for a generalized ESD many-outlier procedure. Technometrics 25, 165172.
21. Hernández-Avila, M, Romieu, I, Parra, S, et al. (1998) Validity and reproducibility of a food frequency questionnaire to assess dietary intake of women living in Mexico City. Salud Publica Mex 40, 133140.
22. Hernández-Avila, M, Resoles, M, Parra, S, et al. (2003) Sistema de Evaluación de Hábitos Nutricionales y Consumo de Nutrimentos (SNUT). Cuernavaca: INSP.
23. Arranz, S, Chiva-Blanch, G, Valderas-Martínez, P, et al. (2012) Wine, beer, alcohol and polyphenols on cardiovascular disease and cancer. Nutrients 4, 759781.
24. Denova-Gutiérrez, E, Tucker, KL, Flores, M, et al. (2016) Dietary patterns are associated with predicted cardiovascular disease risk in an urban Mexican adult population. J Nutr 146, 9097.
25. Martínez González, MA, López, FC, Varo, JJ, et al. (2005) Validation of the Spanish version of the physical activity questionnaire used in the Nurses ‘Health Study and the Health Professionals’ Follow-up Study. Public Health Nutr 8, 920927.
26. Flores, YN, Auslander, A, Crespi, CM, et al. (2016) Longitudinal association of obesity, metabolic syndrome and diabetes with risk of elevated aminotransferase levels in a cohort of Mexican health workers. J Dig Dis 17, 304312.
27. Tate, JR, Rifai, N, Berg, K, et al. (1998) International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) standardization project for the measurement pf lipoprotein(a). Phase 2: selection and properties of a proposed secondary reference material for lipoprotein(a). Clin Chem 44, 16291640.
28. National Cholesterol Education Program, National Heart, Lung and Blood Institute & National Institute of Health (2001) ‘Detection, Evaluation and Treatment of High Blood Cholesterol in Adults (Adults Treatment Panel III), Executive Summary,’ Third Report of the National Cholesterol Education Program (NCEP) Expert Panel, 10-3670:16. Bethesda, MD: National Institutes of Health.
29. D’Agostino, RB, Grundy, S, Sullivan, LM, et al. (2001) Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. JAMA 286, 180187.
30. Flint, AJ, Rexrode, KM, Hu, FB, et al. (2010) Body mass index, waist circumference, and risk of coronary heart disease: a prospective study among men and women. Obes Res Clin Prac 4, 7181.
31. Wang, Z & Nakayama, T (2010) Inflammation, a link between obesity and cardiovascular disease. Mediators Inflamm 2010, 535918.
32. Mukamal, KJ, Conigrave, KM, Mittleman, MA, et al. (2003) Roles of drinking pattern and type of alcohol consumed in coronary heart disease in men. N Engl J Med 348, 109118.
33. Rajpathak, SN, Freiberg, MS, Wang, C, et al. (2010) Alcohol consumption and the risk of coronary heart disease in postmenopausal women with diabetes: Women’s Health Initiative Observational Study. Eur J Nutr 49, 211218.
34. Ronksley, PE, Brien, SE, Turner, BJ, et al. (2011) Association of alcohol consumption with selected cardiovascular disease outcomes: a systematic review and meta-analysis. BMJ 342, d671.
35. Van de Wiel, A (2012) The effect of alcohol on postprandial and fasting triglycerides. Int J Vasc Med 2012, 862504.
36. Duffey, KJ, Steffen, LM, Van Horn, L, et al. (2012) Dietary patterns matter: diet beverages and cardiometabolic risks in the longitudinal Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Clin Nutr 95, 909915.
37. Dhingra, R, Sullivan, L, Jacques, PF, et al. (2007) Soft drink consumption and risk of developing cardiometabolic risk factors and the metabolic syndrome in middle-aged adults in the community. Circulation 116, 480488.
38. Hoare, E, Varsamis, P, Owen, N, et al. (2017) Sugar-and intense-sweetened drinks in Australia: a systematic review on cardiometabolic risk. Nutrients 9, 1075.
39. Khan, TA & Sievenpiper, JL (2016) Controversies about sugars: results from systematic reviews and meta-analyses on obesity, cardiometabolic disease and diabetes. Eur J Nutr 55, 2543.
40. Tokunaga, S, White, IR, Frost, C, et al. (2002) Green tea consumption and serum lipids and lipoproteins in a population of healthy workers in Japan. Ann Epidemiol 12, 157165.
41. Davies, MJ, Judd, JT, Baer, DJ, et al. (2003) Black tea consumption reduces total and LDL cholesterol in mildly hypercholesterolemic adults. J Nutr 133, 3298S3302S.
42. Hino, A, Adachi, H, Enomoto, M, et al. (2007) Habitual coffee but not green tea consumption is inversely associated with metabolic syndrome: an epidemiological study in a general Japanese population. Diabetes Res Clin Pract 76, 383389.
43. Kim, A, Chiu, A, Barone, MK, et al. (2011) Green tea catechins decrease total and low-density lipoprotein cholesterol: a systematic review and meta-analysis. J Am Diet Assoc 111, 17201729.
44. Suzuki, Y, Miyoshi, N & Isemura, M (2012) Health-promoting effects of green tea. Proc Jpn Acad Ser B Phys Biol Sci 88, 88101.
45. Higdon, JV & Frei, B (2006) Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr 46, 101123.
46. van Dongen, LH, Mölenberg, FJ, Soedamah-Muthu, SS, et al. (2017) Coffee consumption after myocardial infarction and risk of cardiovascular mortality: a prospective analysis in the Alpha Omega Cohort. Am J Clin Nutr 106, 11131120.
47. Kouli, GM, Panagiotakos, DB, Georgousopoulou, EN, et al. (2018) J-shaped relationship between habitual coffee consumption and 10-year (2002–2012) cardiovascular disease incidence: the ATTICA study. Eur J Nutr 57, 16771685.
48. Ikeda, I, Imasato, Y, Sasaki, E, et al. (1992) Tea catechins decrease micellar solubility and intestinal absorption of cholesterol in rats. Biochim Biophys Acta 1127, 141146.
49. Ness, AR, Smith, GD & Hart, C (2001) Milk, coronary heart disease and mortality. J Epidemiol Community Health 55, 379382.
50. Elwood, PC, Strain, JJ, Robson, PJ, et al. (2005) Milk consumption, stroke, and heart attack risk: evidence from the Caerphilly cohort of older men. J Epidemiol Community Health 59, 502505.
51. Jakobsen, MU, O’Reilly, EJ, Heitmann, BL, et al. (2009) Major types of dietary fat and risk of coronary heart disease: a pooled analysis of 11 cohort studies. Am J Clin Nutr 89, 14251432.
52. Allender, PS, Cutler, JA, Follmann, D, et al. (1996) Dietary calcium and blood pressure: a meta-analysis of randomized clinical trials. Ann Intern Med 124, 825831.
53. Bucher, HC, Cook, RJ, Guyatt, GH, et al. (1996) Effects of dietary calcium supplementation on blood pressure. A meta-analysis of randomised controlled trials. JAMA 275, 10161022.
54. Mensink, RP, Zock, PL, Kester, AD, et al. (2003) Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr 77, 11461155.
55. Maas, AH & Appelman, YE (2010) Gender differences in coronary heart disease. Neth Heart J 18, 598602.
56. Denova-Gutiérrez, E, Tucker, KL, Salmerón, J, et al. (2016) Relative validity of a food frequency questionnaire to identify dietary patterns in an adult Mexican population. Salud Publica Mex 58, 608616.

Keywords

Type Description Title
WORD
Supplementary materials

Rivera-Paredez et al. supplementary material 1
Rivera-Paredez et al. supplementary material

 Word (85 KB)
85 KB

Patterns of beverage consumption and risk of CHD among Mexican adults

  • Berenice Rivera-Paredez (a1), Paloma Muñoz-Aguirre (a2), Leticia Torres-Ibarra (a2), Paula Ramírez (a1), Rubí Hernández-López (a3), Elizabeth Barrios (a3), Leith León-Maldonado (a4), Edgar Denova-Gutiérrez (a5), Mario Flores (a5), Eduardo Salazar-Martínez (a2) and Jorge Salmerón (a1) (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed