Skip to main content Accessibility help

Organ-specific exposure and response to sulforaphane, a key chemopreventive ingredient in broccoli: implications for cancer prevention

  • Omkara L. Veeranki (a1), Arup Bhattacharya (a1), James R. Marshall (a1) and Yuesheng Zhang (a1)


Naturally occurring sulforaphane (SF) has been extensively studied for cancer prevention. However, little is known as to which organs may be most affected by this agent, which impedes its further development. In the present study, SF was administered to rats orally either in a single dose or once daily for 7 d. Tissue distribution of SF was measured by a HPLC-based method. Glutathione S-transferase (GST) and NAD(P)H:quinone oxidoreductase 1 (NQO1), two well-known cytoprotective phase 2 enzymes, were measured using biochemical assays to assess tissue response to SF. SF was delivered to different organs in vastly different concentrations. Tissue uptake of SF was the greatest in the stomach, declining rapidly in the descending gastro-intestinal tract. SF was rapidly eliminated through urinary excretion, and urinary concentrations of SF equivalents were 2–4 orders of magnitude higher than those of plasma. Indeed, tissue uptake level of SF in the bladder was second only to that in the stomach. Tissue levels of SF in the colon, prostate and several other organs were very low, compared to those in the bladder and stomach. Moreover, induction levels of GST and NQO1 varied by 3- to 6-fold among the organs of SF-treated rats, though not strictly correlated with tissue exposure to SF. Thus, there is profound organ specificity in tissue exposure and response to dietary SF, suggesting that the potential chemopreventive benefit of dietary SF may differ significantly among organs. These findings may provide a basis for prioritising organs for further chemopreventive study of SF.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Organ-specific exposure and response to sulforaphane, a key chemopreventive ingredient in broccoli: implications for cancer prevention
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Organ-specific exposure and response to sulforaphane, a key chemopreventive ingredient in broccoli: implications for cancer prevention
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Organ-specific exposure and response to sulforaphane, a key chemopreventive ingredient in broccoli: implications for cancer prevention
      Available formats


Corresponding author

*Corresponding author: Y. Zhang, fax +1 716 845 1144, email


Hide All
1Zhang, Y, Talalay, P, Cho, CG, et al. (1992) A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc Natl Acad Sci U S A 89, 23992403.
2Zhang, Y, Kensler, TW, Cho, CG, et al. (1994) Anticarcinogenic activities of sulforaphane and structurally related synthetic norbornyl isothiocyanates. Proc Natl Acad Sci U S A 91, 31473150.
3Fahey, JW, Zhang, Y & Talalay, P (1997) Broccoli sprouts: an exceptionally rich source of inducers of enzymes that protect against chemical carcinogens. Proc Natl Acad Sci U S A 94, 1036710372.
4Zhang, Y & Tang, L (2007) Discovery and development of sulforaphane as a cancer chemopreventive phytochemical. Acta Pharmacol Sin 28, 13431354.
5Rausch, V, Liu, L, Kallifatidis, G, et al. (2010) Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics. Cancer Res 70, 50045013.
6Li, Y, Zhang, T, Korkaya, H, et al. (2010) Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin Cancer Res 16, 25802590.
7Munday, R, Mhawech-Fauceglia, P, Munday, CM, et al. (2008) Inhibition of urinary bladder carcinogenesis by broccoli sprouts. Cancer Res 68, 15931600.
8Shen, G, Khor, TO, Hu, R, et al. (2007) Chemoprevention of familial adenomatous polyposis by natural dietary compounds sulforaphane and dibenzoylmethane alone and in combination in ApcMin/+ mouse. Cancer Res 67, 99379944.
9Chung, FL, Conaway, CC, Rao, CV, et al. (2000) Chemoprevention of colonic aberrant crypt foci in Fischer rats by sulforaphane and phenethyl isothiocyanate. Carcinogenesis 21, 22872291.
10Conaway, CC, Wang, CX, Pittman, B, et al. (2005) Phenethyl isothiocyanate and sulforaphane and their N-acetylcysteine conjugates inhibit malignant progression of lung adenomas induced by tobacco carcinogens in A/J mice. Cancer Res 65, 85488557.
11Kuroiwa, Y, Nishikawa, A, Kitamura, Y, et al. (2006) Protective effects of benzyl isothiocyanate and sulforaphane but not resveratrol against initiation of pancreatic carcinogenesis in hamsters. Cancer Lett 241, 275280.
12Keum, YS, Khor, TO, Lin, W, et al. (2009) Pharmacokinetics and pharmacodynamics of broccoli sprouts on the suppression of prostate cancer in transgenic adenocarcinoma of mouse prostate (TRAMP) mice: implication of induction of Nrf2, HO-1 and apoptosis and the suppression of Akt-dependent kinase pathway. Pharm Res 26, 23242331.
13Xu, C, Huang, MT, Shen, G, et al. (2006) Inhibition of 7,12-dimethylbenz(a)anthracene-induced skin tumorigenesis in C57BL/6 mice by sulforaphane is mediated by nuclear factor E2-related factor 2. Cancer Res 66, 82938296.
14Gills, JJ, Jeffery, EH, Matusheski, NV, et al. (2006) Sulforaphane prevents mouse skin tumorigenesis during the stage of promotion. Cancer Lett 236, 7279.
15Fahey, JW, Haristoy, X, Dolan, PM, et al. (2002) Sulforaphane inhibits extracellular, intracellular, and antibiotic-resistant strains of Helicobacter pylori and prevents benzo[a]pyrene-induced stomach tumors. Proc Natl Acad Sci U S A 99, 76107615.
16Qazi, A, Pal, J, Maitah, M, et al. (2010) Anticancer activity of a broccoli derivative, sulforaphane, in barrett adenocarcinoma: potential use in chemoprevention and as adjuvant in chemotherapy. Transl Oncol 3, 389399.
17Matsui, TA, Murata, H, Sakabe, T, et al. (2007) Sulforaphane induces cell cycle arrest and apoptosis in murine osteosarcoma cells in vitro and inhibits tumor growth in vivo. Oncol Rep 18, 12631268.
18Myzak, MC, Tong, P, Dashwood, WM, et al. (2007) Sulforaphane retards the growth of human PC-3 xenografts and inhibits HDAC activity in human subjects. Exp Biol Med 232, 227234.
19Singh, AV, Xiao, D, Lew, KL, et al. (2004) Sulforaphane induces caspase-mediated apoptosis in cultured PC-3 human prostate cancer cells and retards growth of PC-3 xenografts in vivo. Carcinogenesis 25, 8390.
20Cornblatt, BS, Ye, L, Dinkova-Kostova, AT, et al. (2007) Preclinical and clinical evaluation of sulforaphane for chemoprevention in the breast. Carcinogenesis 28, 14851490.
21Kensler, TW, Chen, JG, Egner, PA, et al. (2005) Effects of glucosinolate-rich broccoli sprouts on urinary levels of aflatoxin-DNA adducts and phenanthrene tetraols in a randomized clinical trial in He Zuo township, Qidong, People's Republic of China. Cancer Epidemiol Biomarkers Prev 14, 26052613.
22Dinkova-Kostova, AT, Fahey, JW, Wade, KL, et al. (2007) Induction of the Phase 2 response in mouse and human skin by sulforaphane-containing broccoli sprout extracts. Cancer Epidemiol Biomarkers Prev 16, 847851.
23Yanaka, A, Fahey, JW, Fukumoto, A, et al. (2009) Dietary sulforaphane-rich broccoli sprouts reduce colonization and attenuate gastritis in Helicobacter pylori-infected mice and humans. Cancer Prev Res 2, 353360.
24Riedl, MA, Saxon, A & Diaz-Sanchez, D (2009) Oral sulforaphane increases Phase II antioxidant enzymes in the human upper airway. Clin Immunol 130, 244251.
25Egner, PA, Chen, JG, Wang, JB, et al. (2011) Bioavailability of sulforaphane from two broccoli sprout beverages: results of a short-term, cross-over clinical trial in Qidong, China. Cancer Prev Res 4, 384395.
26Kassahun, K, Davis, M, Hu, P, et al. (1997) Biotransformation of the naturally occurring isothiocyanate sulforaphane in the rat: identification of phase I metabolites and glutathione conjugates. Chem Res Toxicol 10, 12281233.
27Conaway, CC, Krzeminski, J, Amin, S, et al. (2001) Decomposition rates of isothiocyanate conjugates determine their activity as inhibitors of cytochrome p450 enzymes. Chem Res Toxicol 14, 11701176.
28Ye, L, Dinkova-Kostova, AT, Wade, KL, et al. (2002) Quantitative determination of dithiocarbamates in human plasma, serum, erythrocytes and urine: pharmacokinetics of broccoli sprout isothiocyanates in humans. Clin Chim Acta 316, 4353.
29Zhang, Y, Munday, R, Jobson, HE, et al. (2006) Induction of GST and NQO1 in cultured bladder cells and in the urinary bladders of rats by an extract of broccoli (Brassica oleracea italica) sprouts. J Agric Food Chem 54, 93709376.
30Zhang, Y, Wade, KL, Prestera, T, et al. (1996) Quantitative determination of isothiocyanates, dithiocarbamates, carbon disulfide, and related thiocarbonyl compounds by cyclocondensation with 1,2-benzenedithiol. Anal Biochem 239, 160167.
31Zhang, Y, Cho, CG, Posner, GH, et al. (1992) Spectroscopic quantitation of organic isothiocyanates by cyclocondensation with vicinal dithiols. Anal Biochem 205, 100107.
32Ye, L & Zhang, Y (2001) Total intracellular accumulation levels of dietary isothiocyanates determine their activity in elevation of cellular glutathione and induction of phase 2 detoxification enzymes. Carcinogenesis 22, 19871992.
33Prochaska, HJ & Santamaria, AB (1988) Direct measurement of NAD(P)H:quinone reductase from cells cultured in microtiter wells: a screening assay for anticarcinogenic enzyme inducers. Anal Biochem 169, 328336.
34Egner, PA, Kensler, TW, Chen, JG, et al. (2008) Quantification of sulforaphane mercapturic acid pathway conjugates in human urine by high-performance liquid chromatography and isotope-dilution tandem mass spectrometry. Chem Res Toxicol 21, 19911996.
35Gasper, AV, Al-Janobi, A, Smith, JA, et al. (2005) Glutathione S-transferase M1 polymorphism and metabolism of sulforaphane from standard and high-glucosinolate broccoli. Am J Clin Nutr 82, 12831291.
36Hwang, ES & Jeffery, EH (2005) Induction of quinone reductase by sulforaphane and sulforaphane N-acetylcysteine conjugate in murine hepatoma cells. J Med Food 8, 198203.
37Chiao, JW, Chung, FL, Kancherla, R, et al. (2002) Sulforaphane and its metabolite mediate growth arrest and apoptosis in human prostate cancer cells. Int J Oncol 20, 631636.
38Tang, L, Li, G, Song, L, et al. (2006) The principal urinary metabolites of dietary isothiocyanates, N-acetylcysteine conjugates, elicit the same anti-proliferative response as their parent compounds in human bladder cancer cells. Anticancer Drugs 17, 297305.
39Ding, Y, Paonessa, JD, Randall, KL, et al. (2010) Sulforaphane inhibits 4-aminobiphenyl-induced DNA damage in bladder cells and tissues. Carcinogenesis 31, 19992003.
40Tang, L & Zhang, Y (2004) Dietary isothiocyanates inhibit the growth of human bladder carcinoma cells. J Nutr 134, 20042010.
41Michaud, DS, Spiegelman, D, Clinton, SK, et al. (1999) Fruit and vegetable intake and incidence of bladder cancer in a male prospective cohort. J Natl Cancer Inst 91, 605613.
42Tang, L, Zirpoli, GR, Guru, K, et al. (2008) Consumption of raw cruciferous vegetables is inversely associated with bladder cancer risk. Cancer Epidemiol Biomarkers Prev 17, 938944.
43Tang, L, Zirpoli, GR, Guru, K, et al. (2010) Intake of cruciferous vegetables modifies bladder cancer survival. Cancer Epidemiol Biomarkers Prev 19, 18061811.
44Haristoy, X, Angioi-Duprez, K, Duprez, A, et al. (2003) Efficacy of sulforaphane in eradicating Helicobacter pylori in human gastric xenografts implanted in nude mice. Antimicrob Agents Chemother 47, 39823984.
45Lewis, SA (2000) Everything you wanted to know about the bladder epithelium but were afraid to ask. Am J Physiol Renal Physiol 278, F867F874.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed