Skip to main content Accessibility help
×
Home

Ontogeny of brush border carbohydrate digestion and uptake in the chick

  • David Sklan (a1), Asaf Geyra (a1), Elad Tako (a1), Orit Gal-Gerber (a1) and Zehava Uni (a1)...

Abstract

Ingestion of carbohydrates from the small intestine is the major route of energy supply in animals. In mammals these functions develop both pre- and postnatally and are coordinated for the sucking period. In birds, the physiological requirements are different and hatchlings ingest diets rich in complex carbohydrates soon after hatching. The present study examined the ontogeny of intestinal carbohydrate uptake in the chicken. The expression of mRNA for a brush border enzyme, sucrase–isomaltase (SI), which is critical in disaccharide digestion, was determined, together with that of the Na–glucose transporter (SGLT)-1, which is the major apical glucose transporter, In addition, the homeobox gene cdx, which is involved in inducing SI expression in mammals was examined. It was found that the expression of cdxA mRNA and cdxA protein increased from day 15 of incubation until hatch, after which further changes were small. CdxA protein was shown to bind to the promoter region of SI in the chick indicating that cdxA is similar to the mammalian cdx2. The mRNA of SI was observed at 15 d incubation, increased from 17 d of incubation to a peak on day 19, decreased at hatch and had a further peak of expression 2 d post-hatch. In contrast, the mRNA of SGLT-1 was not detected until 19 d of incubation when a major peak of expression was observed followed by a decrease to low levels at hatch and small increases post-hatch. It appears that both SI and SGLT-1 mRNA are expressed before hatch in the chick, but the ontogeny of expression is controlled by different mechanisms.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Ontogeny of brush border carbohydrate digestion and uptake in the chick
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Ontogeny of brush border carbohydrate digestion and uptake in the chick
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Ontogeny of brush border carbohydrate digestion and uptake in the chick
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Professor D. Sklan, fax +972 8 9489865, email sklan@agri.huji.ac.il

References

Hide All
Boudreau, F, Zhu, Y & Traber, PG (2001) Sucrase–isomaltase gene transcription requires the hepatocyte nuclear factor-1 (HNF-1) regulatory element and is regulated by the ratio of HNF-1 alpha to HNF-1 beta. Journal of Biological Chemistry 276, 3212232128.
Chediack, JG, Caviedes-Vidal, E, Karasov, WH & Pestchanker, M (2001) Passive absorption of hydrophilic carbohydrate probes by the house sparrow Passer domesticus. Journal of Experimental Biology 204, 723731.
Chomczynski, P & Sacchi, N (1987) Single step method of RNA isolation by acid guanidium thiocyanate-phenol-choloroform extraction. Analytical Biochemistry 162, 156159.
Devereux, J, Haeberli, P & Smithies, O (1984) A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12, 387395.
Edelman, GM & Jones, FS (1993) Outside and downstream of the homeobox. Journal of Biological Chemistry 268, 2068320686.
Fang, R, Santiago, NA, Olds, LC & Sibley, E (2000) The homeodomain protein Cdx2 regulates lactase gene promoter activity during enterocyte differentiation. Gastroenterology 118, 115127.
Ferraris, RF & Diamond, J (1997) Regulation of intestinal sugar transport. Physiological Reviews 77, 257302.
Ferraris, RP (2001) Dietary and developmental regulation of intestinal sugar transport. Biochemical Journal 360, 265276.
Frumkin, A, Pillemer, G, Haffner, R, Tarcic, N, Gruenbaum, Y & Fainsod, A (1994) A role for CdxA in gut closure and intestinal epithelia differentiation. Development 120, 253263.
Frumkin, A, Rangini, Z, Ben-Yehuda, A, Gruenbaum, Y & Fainsod, A (1991) A chicken caudal homologue, CHox-cad, is expressed in the epiblast with posterior localization and in the early endodermal lineage. Development 112, 207219.
Gal-Garber, O, Mabjeesh, SJ, Sklan, D & Uni, Z (2000) Partial sequence and expression of the gene for and activity of the sodium glucose transporter in the small intestine of fed, starved and refed chickens. Journal of Nutrition 130, 21742179.
Geyra, A, Uni, Z, Gal-Gerber, O, Guy, D & Sklan, D (2002) Starving affects CDX gene expression during small intestinal development in the chick. Journal of Nutrition 132, 911917.
Goda, T, Yasutake, H, Tanaka, T & Takase, S (1999) Lactase–phlorizin hydrolase and sucrase–isomaltase genes are expressed differently along the villus–crypt axis of rat jejunum. Journal of Nutrition 129, 11071113.
Huber, PA, Gao, Y, Fraser, ID, Copeland, O, El-Mezgoeldi, M, Slatter, DA, Keane, NE, Marston, SB & Levine, BA (1998) Structure-activity studies of the regulatory interaction of the 10 kilodalton C-terminal fragment of caldesmon with actin and the effect of mutation of caldesmon residues 691–696. Biochemistry 37, 23142326.
Jiang, L & Ferraris, RP (2001) Developmental reprogramming of rat GLUT-5 requires de novo mRNA and protein synthesis. American Journal of Physiology 280, G113G120.
Krasinski, SD, Van Wering, HM, Tannemaat, MR & Grand, RJ (2001) Differential activation of intestinal gene promoters: functional interactions between GATA-5 and HNF-1 alpha. American Journal of Physiology 281, G69G84.
Lorentz, O, Duluc, I, De Arcangelis, A, Simon-Assman, P, Kedinger, M & Freund, JN (1997) Key role of the cdx2 homeobox gene in extracellular matrix-mediated intestinal cell differentiation. Journal of Cell Biology 139, 15531565.
Markowitz, AJ, Wu, GD, Bader, A, Cui, Z, Chen, L & Traber, PG (1995) Regulation of lineage-specific transcription of the sucrase–isomaltase gene in transgenic mice and cell lines. American Journal of Physiology 269, G925G939.
Morales, AV, de la Rosa, EJ & de Pablo, F (1996) Expression of the cCdx-B homeobox gene in chick embryo suggests its participation in rostrocaudal axial patterning. Developmental Dynamics 206, 343353.
National Research Council (1994) Nutrient Requirements of Poultry, 9th ed. Washington, DC: National Academy of Science.
Noy, Y & Sklan, D (2001) Yolk and exogenous feed utilization in the posthatch chick. Poultry Science 80, 14901495.
O'Connor, TP & Diamond, J (1999) Ontogeny of intestinal safety factors: lactase capacities and lactose loads. American Journal of Physiology 276, R753R765.
Silberg, DG, Swain, GP, Suh, ER & Traber, PG (2000) Cdx1 and cdx2 expression during intestinal development. Gastroenterology 119, 961971.
Sklan, D & Noy, Y (2000) Hydrolysis and absorption in the small intestines of posthatch chicks. Poultry Science 79, 13061310.
Suh, E, Chen, L, Taylor, J & Traber, PG (1994) A homeodomain protein related to caudal regulates intestine-specific gene transcription. Molecular and Cellular Biology 14, 73407351.
Sulistiyanto, B, Akiba, Y & Sato, K (1999) Energy utilisation of carbohydrate, fat and protein sources in newly hatched broiler chicks. British Poultry Science 40, 653659.
Traber, PG (1997) Epithelial cell growth and differentiation. V. Transcriptional regulation, development, and neoplasia of the intestinal epithelium. American Journal of Physiology 273, G979G981.
Tung, J, Markowitz, AJ, Silberg, DG & Traber, PG (1997) Developmental expression of SI is regulated in transgenic mice by an evolutionarily conserved promoter. American Journal of Physiology 273, G83G92.
Uni, Z (1998) Research notes: Identification and isolation of chicken sucrase-isomaltase cDNA sequence. Poultry Science 77, 140144.
Wu, GD, Chen, L, Forslund, K & Traber, PG (1994) Hepatocyte nuclear factor-1 alpha (HNF-1 alpha) and HNF-1 beta regulate transcription via two elements in an intestine-specific promoter. Journal of Biological Chemistry 269, 1708017085.
Wu, GD, Wang, W & Traber, PG (1992) Isolation and characterization of the human sucrase–isomaltase gene and demonstration of intestine-specific transcriptional elements. Journal of Biological Chemistry 267, 78637870.

Keywords

Ontogeny of brush border carbohydrate digestion and uptake in the chick

  • David Sklan (a1), Asaf Geyra (a1), Elad Tako (a1), Orit Gal-Gerber (a1) and Zehava Uni (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed