Skip to main content Accessibility help
×
Home

Nutritional evaluation of the trypsin (EC 3.4.21.4) inhibitor from cowpea (Vigna unguiculata Walp.)

  • A. Pusztal (a1), G. Grant (a1), D. J. Brown (a1), J. C. Stewart (a1), S. Bardocz (a1), S. W. B. Ewen (a2), A. M. R. Gatehouse (a3) and V. Hilder (a3)...

Abstract

The effect of feeding rats purified cowpea (Vigna unguiculata Walp.) trypsin (EC 3.4.21.4) inhibitor in a semi-synthetic high-quality diet based on lactalbumin (10 g inhibitor/kg) for 10 d was a moderate reduction in the weight gain of rats in comparison with controls, despite an identical food intake in the two groups. The reduction in the growth rate was about 20% on a live weight basis. However, the corresponding value calculated from the weight of dry carcasses was less, only about 7%, probably because the water content of the body of the two groups of rats was different. Although most of the cowpea trypsin inhibitor (CpTI) was rapidly broken down in the digestive tract, its inclusion in the diet led to a slight, though significant, increase in the nitrogen content of faeces but not of urine. Accordingly, the net protein utilization of rats fed on inhibitor-containing diets was also slightly depressed while their energy expenditure was elevated. In agreement with results obtained for the protease inhibitors of soya bean, the slight anti-nutritional effects of CpTI were probably due mainly to the stimulation of the growth and metabolism of the pancreas. Thus, the nutritional penalty for increased insect-resistance after the transfer of the cowpea trypsin inhibitor gene into food plants is slight in the short-term.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Nutritional evaluation of the trypsin (EC 3.4.21.4) inhibitor from cowpea (Vigna unguiculata Walp.)
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Nutritional evaluation of the trypsin (EC 3.4.21.4) inhibitor from cowpea (Vigna unguiculata Walp.)
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Nutritional evaluation of the trypsin (EC 3.4.21.4) inhibitor from cowpea (Vigna unguiculata Walp.)
      Available formats
      ×

Copyright

References

Hide All
Abbey, B. W., Neale, R. J. & Norton, G. (1979 a). Nutritional effects of field bean (Vicia faba L.) proteinase inhibitors fed to rats. British Journal of Nutrition 41, 3138.
Abbey, B. W., Norton, G. & Neale, R. J. (1979 b). Effects of dietary trypsin inhibitors from field bean (Vicia faba L.) and field bean meal on pancreatic function in the rat. British Journal of Nutrition 41, 3945.
Bardocz, S., Grant, G., Brown, D. S., Ewen, S. W. B. & Pusztai, A. (1989). Involvement of polyamines in Phaseolus vulgaris lectin-induced growth of rat pancreas in vivo. Medical Science Research 17, 309311.
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72, 248254.
Coates, M. E., O'Donoghue, P. N., Payne, P. R. & Ward, R. J. (1969). Laboratory Animal Handbooks. 2. Laboratory Standards for Laboratory Rats and Mice, p. 15. London: Laboratory Animals Ltd.
Davidson, J., Mathieson, J. & Boyne, A. W. (1970). The use of automation in determining nitrogen by the Kjeldahl method, with final calculations by computer. Analyst 95, 181193.
Friedman, M. (1986). Nutritional and Toxicological Significance of Enzyme Inhibitors in Foods, [Friedman, M., editor]. New York and London: Plenum Press.
Gallaher, D. & Schneeman, B. O. (1984). Nutritional and metabolic response to plant inhibitors of digestive enzymes. In Nutritional and Metabolic Aspects of Food Safety. Advances in Experimental Medicine and Biology, pp. 299320 [Friedman, M., editor]. New York and London: Plenum Press.
Gatehouse, A. M. R. & Boulter, D. (1983). Assessment of the antimetabolic effects of trypsin inhibitors of cowpea (Vigna unguiculata) and other legumes on the development of the bruchid beetle Callosobruchus maculatus. Journal of Science of Food and Agriculture 34, 345350.
Gatehouse, A. M. R., Gatehouse, J. A. & Boulter, D. (1980). Isolation and characterisation of trypsin inhibitors from cowpea (Vigna unguiculata). Phytochemistry 19, 751756.
Gatehouse, A. M. R., Gatehouse, J. A., Dobie, P., Kilminster, A. & Boulter, D. (1979). Biochemical basis of insect resistance in Vigna unguiculata. Journal of Science of Food and Agriculture 30, 948958.
Grant, G., More, L. J., McKenzie, N. H., Stewart, J. C. & Pusztai, A. (1983). A survey of the nutritional and haemagglutination properties of legume seeds generally available in the UK. British Journal of Nutrition 50, 207214.
Hilder, V. A., Barker, R. F., Samour, R. A., Gatehouse, A. M. R., Gatehouse, J. A. & Boulter, D. (1989). Protein and cDNA sequences of Bowman-Birk protease inhibitors from cowpea (Vigna unguiculata Walp.). Plant Molecular Biology 13, 701710.
Hilder, V. A., Gatehouse, A. M. R., Sheerman, S. E., Barker, R. F. & Boulter, D. (1987). A novel mechanism of insect resistance engineered into tobacco. Nature 330, 156159.
Jahn, R., Schliebler, W. & Greengard, P. A. (1984). A quantitative dot immunobinding assay for proteins using nitrocellulose membrane filters. Proceedings of the National Academy of Sciences U.S.A. 81, 16841687.
Johnson, L. R. & Chandler, A. M. (1973). RNA and DNA of gastric and duodenal mucosa in antrectomized and gastrin-treated rats. American Journalof Physiology 224, 937940.
Kochar, N., Walker, A. F. & Pike, D. J. (1988). Effect of variety on protein content, amino acid composition and trypsin inhibitor activity of cowpeas. Food Chemistry 29, 6578.
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of Bacteriophage T4. Nature 227, 680685.
Liener, I. E. & Kakade, M. L. (1980). Protease inhibitors. In Toxic Constituents of Plant Foodstuffs, 2nd ed., pp. 771 [Liener, I. E., editor]. New York: Academic Press.
Lovtrup, S. (1962). Chemical determination of DNA in animal tissues. Acta Biochimica Polonica 9, 411424.
Madar, Z., Gertler, A. & Birk, Y. (1979). The fate of the Bowman-Birk trypsin inhibitor from soybeans in the digestive track of chicks. Comparative Biochemistry and Physiology 62A, 10571061.
Palmer, D. W. & Peters, T. Jr. (1969). Automated determination of free amino groups in serum and plasma using 2,4,6-trinitrobenzene sulfonate. Clinical Chemistry 15, 891901.
Pusztai, A. (1967). Trypsin inhibitors of plant origin, their chemistry and potential role in animal nutrition. Nutrition Abstracts and Reviews 37, 19.
Richardson, M. (1981). Plant protein inhibitors of enzymes; their role in animal nutrition and plant defence. Journal of Biological Education 15, 178182.
Rubio, L. A., Grant, G.Bardocz, S., Dewey, P. & Pusztai, A. (1991). Nutritional response of growing rats to faba beans (Vicia faba L., minor) and faba bean fractions. British Journal of Nutrition 66, 533542.
Schachterle, G. R. & Pollack, R. L. (1973). A simplified method for the quantitative assay of small amounts of protein in biological material. Analytical Biochemistry 51, 654655.
Seiler, N. & Knödgen, B. (1980). HPLC procedure for the simultaneous determination of the natural polyamines and their monoacetyl derivatives.Journal of Chromatography 221, 227235.
Sneider, W. C. (1957). Determination of nucleic acids in tissue by pentose analysis. Methods in Enzymology 3, 680684.
Technicon Instruments Corporation (1963 a). Creatinine; Technicon AutoAnalyzer Method File, N-11a.
Technicon Instruments Corporation (1963 b). Urea nitrogen; Technicon AutoAnalyzer Method File, N-11c.
Unicam Instruments Ltd. (1960). Ammonia; Methodology Sheet No. 51.
Zivin, J. A. & Snarr, J. F. (1973). An automated colorimetric method for the measurement of 3-hydroxybutyrate. Analytical Biochemistry 52, 456461.

Keywords

Nutritional evaluation of the trypsin (EC 3.4.21.4) inhibitor from cowpea (Vigna unguiculata Walp.)

  • A. Pusztal (a1), G. Grant (a1), D. J. Brown (a1), J. C. Stewart (a1), S. Bardocz (a1), S. W. B. Ewen (a2), A. M. R. Gatehouse (a3) and V. Hilder (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed