Skip to main content Accessibility help
×
Home

Nutrigenetics of carotenoid metabolism in the chicken: a polymorphism at the β,β-carotene 15,15'-mono-oxygenase 1 (BCMO1) locus affects the response to dietary β-carotene

  • Maamer Jlali (a1), Benoit Graulet (a2) (a3), Béatrice Chauveau-Duriot (a2) (a3), Estelle Godet (a1), Christophe Praud (a1), Carlos Simões Nunes (a4), Elisabeth Le Bihan-Duval (a1), Cécile Berri (a1) and Michel J. Duclos (a1)...

Abstract

The enzyme β,β-carotene-15,15′-mono-oxygenase 1 (BCMO1) is responsible for the symmetrical cleavage of β-carotene into retinal. We identified a polymorphism in the promoter of the BCMO1 gene, inducing differences in BCMO1 mRNA levels (high in adenines (AA) and low in guanines (GG)) and colour in chicken breast muscle. The present study was designed to test whether this polymorphism could affect the response to dietary β-carotene. Dietary β-carotene supplementation did not change the effects of the genotypes on breast muscle properties: BCMO1 mRNA levels were lower and xanthophyll contents higher in GG than in AA chickens. Lower vitamin E levels in the plasma and duodenum, plasma cholesterol levels and body weight were also observed in GG than in AA chickens. In both genotypes, dietary β-carotene increased vitamin A storage in the liver; however, it reduced numerous parameters such as SCARB1 (scavenger receptor class B type I) in the duodenum, BCMO1 in the liver, vitamin E levels in the plasma and tissues, xanthophyll contents in the pectoralis major muscle and carcass adiposity. However, several diet × genotype interactions were observed. In the GG genotype, dietary β-carotene increased ISX (intestine-specific homeobox) and decreased BCMO1 mRNA levels in the duodenum, decreased xanthophyll concentrations in the duodenum, liver and plasma, and decreased colour index and HDL-cholesterol concentration in the plasma. Retinol accumulation following dietary β-carotene supplementation was observed in the duodenum of AA chickens only. Therefore, the negative feedback control on β-carotene conversion through ISX appears as functional in the duodenum of GG but not of AA chickens. This could result in a higher availability of β-carotene in the duodenum of GG chickens, reducing the uptake of xanthophylls, liposoluble vitamins and cholesterol.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Nutrigenetics of carotenoid metabolism in the chicken: a polymorphism at the β,β-carotene 15,15'-mono-oxygenase 1 (BCMO1) locus affects the response to dietary β-carotene
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Nutrigenetics of carotenoid metabolism in the chicken: a polymorphism at the β,β-carotene 15,15'-mono-oxygenase 1 (BCMO1) locus affects the response to dietary β-carotene
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Nutrigenetics of carotenoid metabolism in the chicken: a polymorphism at the β,β-carotene 15,15'-mono-oxygenase 1 (BCMO1) locus affects the response to dietary β-carotene
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Dr C. Berri, fax +33 2 47 42 77 78, email cecile.berri@tours.inra.fr

References

Hide All
1 Mora, O, Kuri-Melo, L, González-Gallardo, A, et al. (2004) A potential role of β-carotene in avian embryonic development. Int J Vitam Nutr Res 74, 116122.
2 Koutsos, EA, Clifford, AJ, Calvert, CC, et al. (2003) Maternal carotenoid status modifies the incorporation of dietary carotenoids into immune tissues of growing chickens (Gallus gallus domesticus). J Nutr 133, 11321138.
3 Surai, PF (2002) Natural Antioxidants in Avian Nutrition and Reproduction. Nottingham: Nottingham University Press.
4 Lampert, JM, Holzchuh, J, Hessel, S, et al. (2003) Provitamin A conversion to retinal via the β,β-carotene-15,15′-oxygenase (bcox) is essential for pattern formation and differentiation during zebrafish embryogenesis. Development 130, 21732186.
5 Müller, L, Fröhlich, K & Böh, V (2011) Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem 129, 139148.
6 Wang, Y, Ausman, LM, Greenberg, AS, et al. (2010) Dietary lycopene and tomato extract supplementations inhibit nonalcoholic steatohepatitis-promoted hepatocarcinogenesis in rats. Int J Cancer 126, 17881796.
7 Voutilainen, S, Nurmi, T, Mursu, J, et al. (2006) Carotenoids and cardiovascular health. Am J Clin Nutr 83, 12651271.
8 Krinsky, NI, Landrum, JT & Bone, RA (2003) Biologic mechanisms of the protective role of lutein and zeaxanthin in the eye. Annu Rev Nutr 23, 171201.
9 Na, JC, Song, JY, Lee, BD, et al. (2004) Effect of polarity on absorption and accumulation of carotenoids by laying hens. Anim Feed Sci Technol 117, 305315.
10 Chung, HY, Ferreira, AL, Epstein, S, et al. (2009) Site-specific concentrations of carotenoids in adipose tissue: relations with dietary and serum carotenoid concentrations in healthy adults. Am J Clin Nutr 90, 533539.
11 Wang, Y, Illingworth, DR, Connor, SL, et al. (2010) Competitive inhibition of carotenoid transport and tissue concentrations by high dose supplements of lutein, zeaxanthin and beta-carotene. Eur J Nutr 49, 327336.
12 Bhosale, P & Bernstein, PS (2007) Vertebrate and invertebrate carotenoid-binding proteins. Arch Biochem Biophys 458, 121127.
13 Lindqvist, A, Sharvill, J, Sharvill, DE, et al. (2007) Loss-of-function mutation in carotenoid 15,15′-monooxygenase identified in a patient with hypercarotenemia and hypovitaminosis A. J Nutr 137, 23462350.
14 Ferrucci, L, Perry, JRB, Matteini, A, et al. (2009) Common variation in the β-carotene 15,15′-monooxygenase 1 gene affects circulating levels of carotenoids: a genome-wide association study. Am J Human Genet 84, 123133.
15 Borel, P, De Edelenyi, FS, Vincent-Baudry, S, et al. (2011) Genetic variants in BCMO1 and CD36 are associated with plasma lutein concentrations and macular pigment optical density in humans. Ann Med 43, 4759.
16 Tian, R, Pitchford, WS, Morris, CA, et al. (2009) Genetic variation in the β,β-carotene-9′,10′-dioxygenase gene and association with fat colour in bovine adipose tissue and milk. Anim Genet 41, 253259.
17 Våge, DI & Boman, IA (2010) A nonsense mutation in the beta-carotene oxygenase 2 (BCO2) gene is tightly associated with accumulation of carotenoids in adipose tissue in sheep (Ovis aries). BMC Genet 11, 10.
18 Ortega, H, Castilla, P, Gómez-Coronado, D, et al. (2005) Influence of apolipoprotein E genotype on fat-soluble plasma antioxidants in Spanish children. Am J Clin Nutr 81, 624632.
19 Herron, KL, McGrane, MM, Waters, D, et al. (2006) The ABCG5 polymorphism contributes to individual responses to dietary cholesterol and carotenoids in Eggs. J Nutr 136, 11611165.
20 Borel, P, Moussa, M, Reboul, E, et al. (2007) Human plasma levels of vitamin E and carotenoids are associated with genetic polymorphism in genes involved in lipid metabolism. J Nutr 137, 26532659.
21 Borel, P, Moussa, M, Reboul, E, et al. (2009) Human fasting plasma concentrations of vitamin E and carotenoids, and their association with genetic variants in apo C-III cholesteryl ester transfer protein, hepatic lipase, intestinal fatty acid binding protein and microsomal triacylglycerol transfer protein. Br J Nutr 101, 680687.
22 Borel, P (2012) Genetic variations involved in interindividual variability in carotenoid status. Mol Nutr Food Res 56, 228240.
23 Le Bihan-Duval, E, Nadaf, J, Berri, C, et al. (2011) Detection of a Cis [corrected] eQTL controlling BCMO1 gene expression leads to the identification of a QTG for chicken breast meat color. PLoS One 6, e14825.
24 Jlali, M, Graulet, B, Chauveau-Duriot, B, et al. (2012) A mutation in the promoter of the chicken β,β-carotene-15,15′-monooxygenase 1 gene alters xanthophyll metabolism through a selective effect on its mRNA abundance in the breast muscle. J Anim Sci 90, 42804288.
25 Lindqvist, A & Andersson, S (2002) Biochemical properties of purified recombinant human beta-carotene 15,15′-monooxygenase. J Biol Chem 277, 2394223948.
26 Lakshman, MR (2004) Alpha and omega of carotenoid cleavage. J Nutr 134, 241S245S.
27 Kim, YS & Oh, DK (2009) Substrate specificity of a recombinant chicken beta-carotene 15,15′-monooxygenase that converts beta-carotene into retinal. Biotechnol Lett 31, 403408.
28 Le Bihan-Duval E, Nadaf J, Berri C, et al. (2010) >Marqueurs génétiques pour la coloration de la viande (Genetic markers for coloring meat). License deposit 25 August 2008, no. EP2161345A1.
29 Nadaf, J, Gilbert, H, Pitel, F, et al. (2007) Identification of QTL controlling meat quality traits in an F2 cross between two chicken lines selected for either low or high growth rate. BMC Genomics 8, 155.
30 Berri, C, Le Bihan-Duval, E, Debut, M, et al. (2007) Consequence of muscle hypertrophy on Pectoralis major characteristics and breast meat quality of broiler chickens. J Anim Sci 85, 20052011.
31 Folch, J, Lees, M & Sloane Stanley, GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497509.
32 Nozière, P, Grolier, P, Durand, D, et al. (2006) Variations in carotenoids, fat-soluble micronutrients, and color in cows' plasma and milk following changes in forage and feeding level. J Dairy Sci 89, 26342648.
33 Calderón, F, Chauveau-Duriot, B, Pradel, P, et al. (2007) Variations in carotenoids, vitamins A and E, and color in cow's plasma and milk following a shift from hay diet to diets containing increasing levels of carotenoids and vitamin E. J Dairy Sci 90, 56515664.
34 Sibut, V, Le Bihan-Duval, E, Tesseraud, S, et al. (2008) AMP-activated protein kinase involved in the variations of muscle glycogen and breast meat quality between lean and fat chickens. J Anim Sci 86, 28882896.
35 Vandesompele, J, De Preter, K, Pattyn, F, et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3, RESEARCH0034.
36 Hellemans, J, Mortier, G, De Paepe, A, et al. (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8, R19.
37 Chauveau-Duriot, B, Doreau, M, Nozière, P, et al. (2010) Simultaneous quantification of carotenoids, retinol, and tocopherols in forages, bovine plasma, and milk: validation of a novel UPLC method. Anal Bioanal Chem 397, 777790.
38 AOAC (1990) Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed. Washington, DC: Association of Official Analytical Chemists.
39 Lobo, GP, Amengual, J, Li, HN, et al. (2010) Beta, beta-carotene decreases peroxisome proliferator receptor gamma activity and reduces lipid storage capacity of adipocytes in a beta, beta-carotene oxygenase 1-dependent manner. J Biol Chem 285, 2789127899.
40 Amengual, J, Gouranton, E, van Helden, YG, et al. (2011) Beta-carotene reduces body adiposity of mice via BCMO1 . PLoS One 6, e20644.
41 Johansson, S & Melhus, H (2001) Vitamin A antagonizes calcium response to vitamin D in man. J Bone Mineral Res 16, 18991905.
42 Bachmann, H, Desbarats, A, Pattison, P, et al. (2002) Feedback regulation of beta, beta-carotene 15, 15′-monooxygenase by retinoic acid in rats and chickens. J Nutr 132, 36163622.
43 Wyss, A (2004) Carotene oxygenases: a new family of double bond cleavage enzymes. J Nutr 134, 246S250S.
44 Lobo, GP, Hessel, S, Eichinger, A, et al. (2010) ISX is a retinoic acid-sensitive gatekeeper that controls intestinal β,β-carotene absorption and vitamin A production. FASEB J 24, 16561666.
45 Takitani, K, Zhu, CL, Inoue, A, et al. (2006) Molecular cloning of the rat β-carotene 15,15′-monooxygenase gene and its regulation by retinoic acid. Eur J Nutr 45, 320326.
46 Lietz, G, Lange, J & Rimbach, G (2010) Molecular and dietary regulation of β,β-carotene 15,15′-monooxygenase 1 (BCMO1). Arch Biochem Biophys 502, 816.
47 van Bennekum, A, Werder, M, Thuahnai, ST, et al. (2005) Class B scavenger receptor-mediated intestinal absorption of dietary β-carotene and cholesterol. Biochemistry 44, 45174525.
48 Reboul, E, Klein, A, Bietrix, F, et al. (2006) Scavenger receptor class B type I (SR-BI) is involved in vitamin E transport across the enterocyte. J Biol Chem 281, 47394745.
49 van den Berg, H & van Vliet, T (1998) Effect of simultaneous, single oral doses of β-carotene with lutein or lycopene on the β-carotene and retinyl ester responses in the triacylglycerol-rich lipoprotein fraction of men. Am J Clin Nutr 68, 8289.
50 Mamatha, BS & Baskaran, V (2011) Effect of micellar lipids, dietary fiber and β-carotene on lutein bioavailability in aged rats with lutein deficiency. Nutrition 27, 960966.

Keywords

Nutrigenetics of carotenoid metabolism in the chicken: a polymorphism at the β,β-carotene 15,15'-mono-oxygenase 1 (BCMO1) locus affects the response to dietary β-carotene

  • Maamer Jlali (a1), Benoit Graulet (a2) (a3), Béatrice Chauveau-Duriot (a2) (a3), Estelle Godet (a1), Christophe Praud (a1), Carlos Simões Nunes (a4), Elisabeth Le Bihan-Duval (a1), Cécile Berri (a1) and Michel J. Duclos (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed