Skip to main content Accessibility help
×
Home

Nutrient sensing and signalling in the gastrointestinal tract

  • Soraya P. Shirazi-Beechey (a1) and David Bravo (a1)
  • Please note a correction has been issued for this article.
  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Nutrient sensing and signalling in the gastrointestinal tract
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Nutrient sensing and signalling in the gastrointestinal tract
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Nutrient sensing and signalling in the gastrointestinal tract
      Available formats
      ×

Abstract

  • An abstract is not available for this content so a preview has been provided below. To view the full text please use the links above to select your preferred format.

Copyright

References

Hide All
1 Bayliss, WM & Starling, EH (1902) The mechanism of pancreatic secretion. J Physiol 28, 325353.
2 Daly, K, Darby, AC, Hall, N, et al. (2014) Dietary supplementation with lactose or artificial sweetener enhances swine gut Lactobacillus population abundance. Br J Nutr 111, S30S35.
3 Sternini, C, Anselmi, L & Rozengurt, E (2008) Enteroendocrine cells: a site of ‘taste’ in gastrointestinal chemosensing. Curr Opin Endocrinol Diabetes Obes 15, 7378.
4 Rehfeld, JF (2004) A centenary of gastrointestinal endocrinology. Horm Metab Res 36, 735741.
5 Wellendorph, P, Johansen, LD & Bräuner-Osborne, H (2010) The emerging role of promiscuous 7TM receptors as chemosensors for food intake. Vitam Horm 84, 151184.
6 Scott, KP, Gratz, SW, Sheridan, PO, et al. (2013) The influence of diet on gut microbiota. Pharmacol Res 69, 5260.

Nutrient sensing and signalling in the gastrointestinal tract

  • Soraya P. Shirazi-Beechey (a1) and David Bravo (a1)
  • Please note a correction has been issued for this article.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: