Skip to main content Accessibility help
×
Home

New insights into the association of mid-childhood macronutrient intake to pubertal development in adolescence using nutritional geometry

  • Hoi Lun Cheng (a1) (a2), David Raubenheimer (a3), Katharine Steinbeck (a1) (a2), Louise Baur (a2) and Sarah Garnett (a2) (a4)...

Abstract

Nutritional geometry (NG) is a novel dietary analysis approach that considers nutrient balance, rather than single nutrient effects, on health and behaviour. Through NG, recent animal experiments have found that lifespan and reproduction are differentially altered by dietary macronutrient distribution. Epidemiological research using NG reports similar findings for human ageing. Yet, the relation of macronutrient balance to human reproduction, especially reproductive maturation, remains undefined. We studied the impact of childhood macronutrient intake on pubertal maturation, by applying NG to an Australian longitudinal adolescent dataset. Food records, collected at age 8 years from 142 pre-pubertal children (females, 92; males, 50), were analysed for absolute energy, percentage energy and energy-adjusted residuals from protein, carbohydrate and fat. Pubertal stage change (assessed at 8, 13 and 15 years) was modelled to obtain individual mathematical estimates of pubertal timing and tempo. Timing of menarche was recorded. The association of macronutrients to pubertal timing/tempo was assessed via NG, involving generalised additive models and heat maps to aid interpretation. Results showed lower dietary protein (relative to carbohydrate and fat) in girls consistently predicted earlier pubertal timing and menarche, and was related to faster pubertal tempo (all P < 0·05). No significant associations were identified in boys for both timing and tempo. Results suggest a role of non-protein macronutrients in facilitating female maturation; corroborating feeding and reproductive behaviour patterns observed in earlier NG studies of primates. Application of NG to other adolescent datasets is required to confirm the present findings. Such work would advance understanding of how nutrient balance shapes human development and health.

Copyright

Corresponding author

*Corresponding author: H. L. Cheng, email helen.cheng@health.nsw.gov.au

References

Hide All
1.Gluckman, PD, Beedle, AS, Hanson, MA, et al. (2013) Human growth: evolutionary and life history perspectives. Nestle Nutr Inst Workshop Ser 71, 89102.
2.Day, FR, Elks, CE, Murray, A, et al. (2015) Puberty timing associated with diabetes, cardiovascular disease and also diverse health outcomes in men and women: the UK Biobank study. Sci Rep 5, 11208.
3.Beltz, AM, Corley, RP, Bricker, JB, et al. (2014) Modeling pubertal timing and tempo and examining links to behavior problems. Dev Psychol 50, 27152726.
4.Mendle, J (2014) Beyond pubertal timing: new directions for studying individual differences in development. Curr Dir Psychol Sci 23, 215219.
5.Lee, KP, Simpson, SJ, Clissold, FJ, et al. (2008) Lifespan and reproduction in Drosophila: new insights from nutritional geometry. Proc Natl Acad Sci U S A 105, 24982503.
6.Skorupa, DA, Dervisefendic, A, Zwiener, J, et al. (2008) Dietary composition specifies consumption, obesity, and lifespan in Drosophila melanogaster. Aging Cell 7, 478490.
7.Solon-Biet, SM, McMahon, AC, Ballard, JW, et al. (2014) The ratio of macronutrients, not caloric intake, dictates cardiometabolic health, aging, and longevity in ad libitum-fed mice. Cell Metab 19, 418430.
8.Solon-Biet, SM, Walters, KA, Simanainen, UK, et al. (2015) Macronutrient balance, reproductive function, and lifespan in aging mice. Proc Natl Acad Sci U S A 112, 34813486.
9.Le Couteur, DG, Solon-Biet, S, Cogger, VC, et al. (2016) The impact of low-protein high-carbohydrate diets on aging and lifespan. Cell Mol Life Sci 73, 12371252.
10.Le Couteur, DG, Solon-Biet, S, Wahl, D, et al. (2016) New horizons: dietary protein, ageing and the Okinawan ratio. Age Ageing 45, 443447.
11.Cheng, G, Buyken, AE, Shi, L, et al. (2012) Beyond overweight: nutrition as an important lifestyle factor influencing timing of puberty. Nutr Rev 70, 133152.
12.Gunther, AL, Karaolis-Danckert, N, Kroke, A, et al. (2010) Dietary protein intake throughout childhood is associated with the timing of puberty. J Nutr 140, 565571.
13.Remer, T, Shi, L, Buyken, AE, et al. (2010) Prepubertal adrenarchal androgens and animal protein intake independently and differentially influence pubertal timing. J Clin Endocrinol Metab 95, 30023009.
14.Berkey, CS, Gardner, JD, Frazier, AL, et al. (2000) Relation of childhood diet and body size to menarche and adolescent growth in girls. Am J Epidemiol 152, 446452.
15.Rogers, IS, Northstone, K, Dunger, DB, et al. (2010) Diet throughout childhood and age at menarche in a contemporary cohort of British girls. Public Health Nutr 13, 20522063.
16.Kissinger, DG & Sanchez, PHA (1987) The association of dietary factors with the age of menarche. Nutr Res 7, 471479.
17.Maclure, M, Travis, LB, Willett, W, et al. (1991) A prospective cohort study of nutrient intake and age at menarche. Am J Clin Nutr 54, 649656.
18.Meyer, F, Moisan, J, Marcoux, D, et al. (1990) Dietary and physical determinants of menarche. Epidemiology 1, 377381.
19.Merzenich, H, Boeing, H & Wahrendorf, J (1993) Dietary fat and sports activity as determinants for age at menarche. Am J Epidemiol 138, 217224.
20.Moisan, J, Meyer, F & Gingras, S (1990) Diet and age at menarche. Cancer Causes Control 1, 149154.
21.Petridou, E, Syrigou, E, Toupadaki, N, et al. (1996) Determinants of age at menarche as early life predictors of breast cancer risk. Int J Cancer 68, 193198.
22.Simpson, SJ, Le Couteur, DG & Raubenheimer, D (2015) Putting the balance back in diet. Cell 161, 1823.
23.Garnett, SP, Cowell, CT, Baur, LA, et al. (2001) Abdominal fat and birth size in healthy prepubertal children. Int J Obes Relat Metab Disord 25, 16671673.
24.Lewis, J, Milligan, GC & Hunt, A (1995) NUTTAB95 Nutrient Data Table for Use in Australia. Canberra, Australia: Australian Government Publishing Service.
25.McCrory, MA, McCrory, MA, Hajduk, CL, et al. (2002) Procedures for screening out inaccurate reports of dietary energy intake. Public Health Nutr 5, 873882.
26.Huang, TT, Roberts, SB, Howarth, NC, et al. (2005) Effect of screening out implausible energy intake reports on relationships between diet and BMI. Obes Res 13, 12051217.
27.Willett, W & Stampfer, MJ (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124, 1727.
28.Daniel, A (1983) Power, Privilege and Prestige: Occupations in Australia. Melbourne: Longman Cheshire.
29.Kuczmarski, RJ, Ogden, CL, Guo, SS, et al. (2002) 2000 CDC growth charts for the United States: methods and development. National Center for Health Statistics. Vital and Health Stat 11 246, 1190.
30.Cole, TJ, Bellizzi, MC, Flegal, KM, et al. (2000) Establishing a standard definition for child overweight and obesity worldwide: international survey. BMJ 320, 12401243.
31.Garnett, SP, Hogler, W, Blades, B, et al. (2004) Relation between hormones and body composition, including bone, in prepubertal children. Am J Clin Nutr 80, 966972.
32.Duke, PM, Litt, IF & Gross, RT (1980) Adolescents’ self-assessment of sexual maturation. Pediatrics 66, 918920.
33.Marceau, K, Ram, N, Houts, RM, et al. (2011) Individual differences in boys’ and girls’ timing and tempo of puberty: modeling development with nonlinear growth models. Dev Psychol 47, 13891409.
34.Susman, EJ, Houts, RM, Steinberg, L, et al. (2010) Longitudinal development of secondary sexual characteristics in girls and boys between ages 9½ and 15½ years. Arch Pediatr Adolesc Med 164, 166173.
35.Wood, SN (2006) Generalized Additive Models: An Introduction with R. Boca Raton, FL: CRC Press.
36.Wood, SN (2003) Thin plate regression splines. J R Stat Soc Series B Stat Methodol 65, 95114.
37.McLennan, W & Podger, A (1998) 1995 National Nutrition Survey: Nutrient Intakes and Physical Measurements. Canberra: Australian Bureau of Statistics, Commonwealth of Australia.
38.Sorensen, K, Mouritsen, A, Aksglaede, L, et al. (2012) Recent secular trends in pubertal timing: implications for evaluation and diagnosis of precocious puberty. Horm Res Paediatr 77, 137145.
39.Raubenheimer, D, Machovsky-Capuska, GE, Gosby, AK, et al. (2015) Nutritional ecology of obesity: from humans to companion animals. Br J Nutr 113, S26S39.
40.Carwile, JL, Willett, WC, Spiegelman, D, et al. (2015) Sugar-sweetened beverage consumption and age at menarche in a prospective study of US girls. Hum Reprod 30, 675683.
41.Knott, CD, Emery Thompson, M & Wich, SA (2009) Chapter 11: The ecology of female reproduction in wild orangutans. In Orangutans: Geographic Variation in Behavioral Ecology and Conservation, pp. 171188 [SA Wich, SS Utami Atmoko, T Mitra Setia and CP van Schaik, editors]. New York: Oxford University Press.
42.Saltzman, W, Tardify, SD & Rutherford, JN (2010) Hormones and reproductive cycles in primates. In Hormones and Reproduction of Vertebrates, vol. 5: Mammals, pp. 291327 [Norris, D and Lopez, K, editors]. New York: Academic Press.
43.Rothman, JM, Raubenheimer, D & Chapman, CA (2011) Nutritional geometry: gorillas prioritize non-protein energy while consuming surplus protein. Biol Lett 7, 847849.
44.Hanya, G & Chapman, CA (2013) Linking feeding ecology and population abundance: a review of food resource limitation on primates. Ecol Res 28, 183190.
45.Hanya, G, Stevenson, P, van Noordwijk, M, et al. (2011) Seasonality in fruit availability affects frugivorous primate biomass and species richness. Ecography 34, 10091017.
46.Alimujiang, A, Colditz, GA, Gardner, JD, et al. (2018) Childhood diet and growth in boys in relation to timing of puberty and adult height: the longitudinal studies of child health and development. Cancer Causes Control 29, 915926.
47.Marshall, WA & Tanner, JM (1970) Variations in the pattern of pubertal changes in boys. Arch Dis Child 45, 1323.
48.Tinggaard, J, Mieritz, MG, Sorensen, K, et al. (2012) The physiology and timing of male puberty. Curr Opin Endocrinol Diabetes Obes 19, 197203.
49.Harries, ML, Walker, JM, Williams, DM, et al. (1997) Changes in the male voice at puberty. Arch Dis Child 77, 445447.
50.Pietilainen, KH, Korkeila, M, Bogl, LH, et al. (2010) Inaccuracies in food and physical activity diaries of obese subjects: complementary evidence from doubly labeled water and co-twin assessments. Int J Obes (Lond) 34, 437445.
51.Shirtcliff, EA, Dahl, RE & Pollak, SD (2009) Pubertal development: correspondence between hormonal and physical development. Child Dev 80, 327337.

Keywords

Type Description Title
PDF
Supplementary materials

Cheng et al. supplementary material
Cheng et al. supplementary material

 PDF (1.2 MB)
1.2 MB

New insights into the association of mid-childhood macronutrient intake to pubertal development in adolescence using nutritional geometry

  • Hoi Lun Cheng (a1) (a2), David Raubenheimer (a3), Katharine Steinbeck (a1) (a2), Louise Baur (a2) and Sarah Garnett (a2) (a4)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed