Skip to main content Accessibility help
×
Home

Modifying effects of maternal Hb concentration on infant birth weight in women receiving prenatal iron-containing supplements: a randomised controlled trial

  • Linlin Wang (a1), Zuguo Mei (a2), Hongtian Li (a1), Yali Zhang (a1), Jianmeng Liu (a1) and Mary K. Serdula (a2)...

Abstract

Concerns have been raised about the benefits of Fe-containing supplements on infant birth weight among women with normal/high Hb levels at baseline. Thus far, no clinical trials have examined whether the effects of prenatal Fe-containing supplements on birth weight vary by maternal Hb levels. We compared the effects of Fe–folic acid (IFA) or multiple micronutrients (MMN) with folic acid (FA) supplements on birth weight among pregnant women with mild/no anaemia or high Hb levels. A double-blind randomised controlled trial was conducted in 2006–2009. In total, 18 775 pregnant women with mild/no anaemia (<100 g/l) were enrolled from five counties in north China. During the period from before 20 weeks of gestation to delivery, the women randomly received a daily supplement containing the following: (1) FA (400 μg); (2) IFA (FA, 400 μg; Fe, 30 mg); or (3) MMN (FA, Fe and thirteen additional vitamins and minerals). Birth weight was measured within the 1st hour of birth. Maternal Hb concentration was determined at enrolment. Among women with normal (≤132 g/l) or high (133–145 g/l) baseline Hb levels, IFA or MMN supplementation had no effect on birth weight. Among women with very high (>145 g/l) baseline Hb levels, IFA and MMN supplements increased birth weight by 91·44 (95 % CI 3·37, 179·51) g and 107·63 (95 % CI 21·98, 193·28) g (P<0·05), respectively, compared with the FA group. No differences were found between the IFA and the MMN group, regardless of maternal Hb concentration. In conclusion, the effects of Fe-containing supplements on birth weight depended on baseline Hb concentrations. The Fe-containing supplements improved birth weight in women with very high Hb levels before 20 weeks of gestation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Modifying effects of maternal Hb concentration on infant birth weight in women receiving prenatal iron-containing supplements: a randomised controlled trial
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Modifying effects of maternal Hb concentration on infant birth weight in women receiving prenatal iron-containing supplements: a randomised controlled trial
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Modifying effects of maternal Hb concentration on infant birth weight in women receiving prenatal iron-containing supplements: a randomised controlled trial
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: J. Liu, fax +86 10 82801141, email liujm@pku.edu.cn

References

Hide All
1. United Nations International Children’s Emergency Fund & World Health Organization (2004) Low Birthweight: Country, Regional and Global Estimates. New York: UNICEF.
2. Organization for Economic Co-operation and Development/World Health Organization (2012) Health at a Glance: Asia/Pacific 2012. Paris: OECD Publishing.
3. World Health Organization (2012) Guideline: Daily Iron and Folic Acid Supplementation in Pregnant Women. Geneva: WHO.
4. World Health Organization & United Nations University (2000) Composition of a multi-micronutrient supplement to be used in pilot programmes among pregnant women in developing countries: report of a United Nations Children’s Fund (UNICEF), World Health Organization (WHO), United Nations University (UNU), workshop held at UNICEF Headquarters, New York, 9 July 1999. http://apps.who.int/iris/handle/10665/75358 (accessed December 2012).
5. Meier, PR, Nickerson, HJ, Olson, KA, et al. (2003) Prevention of iron deficiency anemia in adolescent and adult pregnancies. Clin Med Res 1, 2936.
6. Harvey, LJ, Dainty, JR, Hollands, WJ, et al. (2007) Effect of high-dose iron supplements on fractional zinc absorption and status in pregnant women. Am J Clin Nutr 85, 131136.
7. Makrides, M, Crowther, CA, Gibson, RA, et al. (2003) Efficacy and tolerability of low-dose iron supplements during pregnancy: a randomized controlled trial. Am J Clin Nutr 78, 145153.
8. Eskeland, B, Malterud, K, Ulvik, RJ, et al. (1997) Iron supplementation in pregnancy: is less enough? A randomized, placebo controlled trial of low dose iron supplementation with and without heme iron. Acta Obstet Gynecol Scand 76, 822828.
9. Hemminki, E & Rimpela, U (1991) Iron supplementation, maternal packed cell volume, and fetal growth. Arch Dis Child 66, 422425.
10. Puolakka, J, Jäne, O, Pakarinen, A, et al. (1980) Serum ferritin as a measure of iron stores during and after normal pregnancy with and without iron supplements. Acta Obstet Gynecol Scand 59, 4351.
11. Falahi, E, Akbari, S, Ebrahimzade, F, et al. (2011) Impact of prophylactic iron supplementation in healthy pregnant women on maternal iron status and birth outcome. Food Nutr Bull 32, 213217.
12. Ziaei, S, Norrozi, M, Faghihzadeh, S, et al. (2007) A randomised placebo-controlled trial to determine the effect of iron supplementation on pregnancy outcome in pregnant women with haemoglobin>or=13.2 g/dl. BJOG 114, 684688.
13. Ouladsahebmadarek, E, Sayyah-Melli, M, Taghavi, S, et al. (2011) The effect of supplemental iron elimination on pregnancy outcome. Pak J Med Sci 27, 641645.
14. Cogswell, ME, Parvanta, I, Ickes, L, et al. (2003) Iron supplementation during pregnancy, anemia, and birth weight: a randomized controlled trial. Am J Clin Nutr 78, 773781.
15. Siega-Riz, AM, Hartzema, AG, Turnbull, C, et al. (2006) The effects of prophylactic iron given in prenatal supplements on iron status and birth outcomes: a randomized controlled trial. Am J Obstet Gynecol 194, 512519.
16. Murphy, JF, O’Riordan, J, Newcombe, RG, et al. (1986) Relation of haemoglobin levels in first and second trimesters to outcome of pregnancy. Lancet 1, 992995.
17. Stephansson, O, Dickman, PW, Johansson, A, et al. (2000) Maternal hemoglobin concentration during pregnancy and risk of stillbirth. JAMA 284, 26112617.
18. Steer, P, Alam, MA, Wadsworth, J, et al. (1995) Relation between maternal haemoglobin concentration and birth weight in different ethnic groups. BMJ 310, 489491.
19. Gaillard, R, Eilers, PH, Yassine, S, et al. (2014) Risk factors and consequences of maternal anaemia and elevated haemoglobin levels during pregnancy: a population-based prospective cohort study. Paediatr Perinat Epidemiol 28, 213226.
20. Peña-Rosas, JP, De-Regil, LM, Dowswell, T, et al. (2012) Daily oral iron supplementation during pregnancy. The Cochrane Database of Systematic Reviews 2012, issue 12, CD004736. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4233117/
21. Liu, JM, Mei, Z, Ye, R, et al. (2013) Micronutrient supplementation and pregnancy outcomes: double-blind randomized controlled trial in China. JAMA Intern Med 173, 276282.
22. Zhou, LM, Yang, WW, Hua, JZ, et al. (1998) Relation of hemoglobin measured at different times in pregnancy to preterm birth and low birth weight in Shanghai, China. Am J Epidemiol 148, 9981006.
23. Sekhavat, L, Davar, R & Hosseinidezoki, S (2011) Relationship between maternal hemoglobin concentration and neonatal birth weight. Hematology 16, 373376.
24. Scanlon, KS, Yip, R, Schieve, LA, et al. (2000) High and low hemoglobin levels during pregnancy: differential risks for preterm birth and small for gestational age. Obstet Gynecol 96, 741748.
25. Abdulah, R, Koyama, H, Miyazaki, K, et al. (2006) Selenium supplementation and blood rheological improvement in Japanese adults. Biol Trace Elem Res 112, 8796.
26. Ma, AG, Schouten, EG, Sun, YY, et al. (2010) Supplementation of iron alone and combined with vitamins improves haematological status, erythrocyte membrane fluidity and oxidative stress in anaemic pregnant women. Br J Nutr 104, 16551661.
27. Chen, Q, Tong, M, Wu, M, et al. (2013) Calcium supplementation prevents endothelial cell activation: possible relevance to preeclampsia. J Hypertens 31, 18281836.
28. Haugen, M, Brantsaeter, AL, Trogstad, L, et al. (2009) Vitamin D supplementation and reduced risk of preeclampsia in nulliparous women. Epidemiology 20, 720726.

Keywords

Type Description Title
WORD
Supplementary materials

Wang supplementary material
Tables S1-S2

 Word (21 KB)
21 KB

Modifying effects of maternal Hb concentration on infant birth weight in women receiving prenatal iron-containing supplements: a randomised controlled trial

  • Linlin Wang (a1), Zuguo Mei (a2), Hongtian Li (a1), Yali Zhang (a1), Jianmeng Liu (a1) and Mary K. Serdula (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed