Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T03:30:38.409Z Has data issue: false hasContentIssue false

Lipid–zinc interaction: its effect on the testes of mice

Published online by Cambridge University Press:  09 March 2007

S. K. Taneja
Affiliation:
Department of Zoology, Panjab University, Chandigarh-160 014, India
S. Chadha
Affiliation:
Department of Zoology, Panjab University, Chandigarh-160 014, India
P. Arya
Affiliation:
Department of Zoology, Panjab University, Chandigarh-160 014, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Lipid-Zn interaction in the testes of mice was studied by feeding them low-fat (30 g maize oil/kg; group LFZD) and high-fat (90 g maize oil/kg; group HFZD) Zn-deficient diets for 6 weeks. The results were compared with those of corresponding Zn-supplemented-diet-fed controls (groups LFZS and HFZS). The integument-related Zn-deficiency symptoms appeared in group HFZD and not in group LFZD mice despite lack of Zn in their ration and an equal level of Zn in their blood serum. The feed intake, gain in body weight and testes weight of the LFZD group were comparable with those of the LFZS and HFZS groups (P < 0·05) but were higher than those of the group HFZD (P <·05). The testes of group HFZD displayed necrotic changes marked by the presence of giant cells, lower RNA, DNA and protein concentrations and higher phospholipid and cholesterol levels than those of mice in the LFZD group. The concentrations of these fractions were not significantly different between LFZD and HFZS. The results do not support the hypothesis that Zn is essential either for testicular function or for nucleic acid and protein synthesis in animals fed on a low-fat diet; however, it appears to be essential for animals fed on a high-fat diet. The changes observed in the testes of the HFZD animais suggest the excess intake of fat as their cause in Zn-deficient animals.

Type
Effects of dietary zinc deficiency
Copyright
Copyright © The Nutrition Society 1995

References

Abbasi, A. A., Prasad, A. S., Ortega, J., Congco, E. & Oberleas, D. (1976). Gonadal function abnormalities in sickle cell anemia. Studies in adult male patients. Annals of Internal Medicine 85, 601605.CrossRefGoogle ScholarPubMed
Bieri, J. G. & Prival, E. L. (1966). Effect of deficiencies of alpha tocopherol, retinol and zinc on lipid composition of rat testes. Journal of Nutrition 89, 5563.CrossRefGoogle ScholarPubMed
Bradshaw, L. J. (1966). Introduction to Molecular Biology Technique, pp. 135137. New Jersey: Prentice Hall Inc.Google Scholar
Chanmugam, P., Wheeler, C. & Hwang, D. H. (1984). The effect of zinc deficiency on prostaglandin synthesis in rat testes. Journal of Nutrition 114, 20662072.CrossRefGoogle ScholarPubMed
Chiamori, N. & Henry, R. J. (1959). Study of the ferric chloride method for determination of total cholesterol and cholesterol esters. American Journal of Clinical Pathology 31, 305309.CrossRefGoogle ScholarPubMed
Clejan, S., Castro-Magana, M., Collipp, P. J., Jonas, E. & Maddaiah, V. T. (1982). Effects of zinc deficiency and castration on fatty acid composition and desaturation in rats. Lipids 17, 129135.CrossRefGoogle ScholarPubMed
Clejan, S., Maddaiah, V. T., Castro-Magana, M. & Collipp, P. J. (1981). Zinc deficiency-induced changes in the composition of microsomal membranes and in the enzymatic regulation of glycerolipid synthesis. Lipids 16, 454460.CrossRefGoogle ScholarPubMed
Daniel, W. W. (1983). Biostatistics: A Foundation for Analysis in the Health Sciences, 3rd ed., pp. 7787. New York: John Wiley & Sons.Google Scholar
Essatara, M. B., McClain, C. J., Levine, A. S. & Morley, J. E. (1984 a). Zinc deficiency and anorexia in rats: the effect of central administration of norepinephrine muscimol and bromerogocryptine. Physiology and Behavior 32, 479482.CrossRefGoogle ScholarPubMed
Essatara, M. B., Morley, J. E., Levine, A. S., Elson, M. K., Shafar, R. B. & McClain, C. J. (1984 b). The role of endogenous opiates in zinc deficiency anorexia. Physiology and Behavior 32, 475478.CrossRefGoogle ScholarPubMed
Folch, J. L. M., Lees, M. & Sloane-Stanley, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226, 497509.CrossRefGoogle ScholarPubMed
Frings, C. S. & Dunn, R. T. (1970). A colorimetric method for determination of total serum lipids based on sulfo-phospho-vanillin reaction. American Journal of Clinical Pathology 53, 8991.CrossRefGoogle ScholarPubMed
Gambal, D. & Ackerman, R. J. (1967). Hormonal control of rat testicular phospholipids. Endocrinology 80, 231239.CrossRefGoogle ScholarPubMed
Golden, M. H. H. & Golden, B. E. (1981). Effects of zinc supplementation on the dietary intake, rate of weight gain and energy cost of tissue deposition in children recovering from severe malnutrition. American Journal of Clinical Nutrition 34, 900908.CrossRefGoogle ScholarPubMed
Giugliano, R. & Millward, D. J. (1984). Growth and zinc homeostasis in severely Zn-deficient rats. British Journal of Nutrition 52, 545560.CrossRefGoogle Scholar
Halstead, J. A., Ronaghy, H. A., Abadi, P., Hagshenass, M., Amirhakenii, G. H., Barakat, R. M. & Reinhold, J. G. (1972). Zn-deficiency in man. The Shiraz experiment. American Journal of Medicine 53, 277284.CrossRefGoogle Scholar
Haschke, F., Singer, P., Baumgartner, D., Steffan, I., Schiling, R. & Lothallar, H. (1985). Growth, zinc and copper nutritional status of male premature infants with different zinc intake. Annals of Nutrition and Metabolism 29, 95102.CrossRefGoogle ScholarPubMed
Hurley, L. S. (1969). Zinc deficiency in the developing rat. American Journal of Clinical Nutrition 22, 13321339.CrossRefGoogle ScholarPubMed
Johnson, A. D. (1970). Testicular lipids. In The Testis, Vol. 2, Biochemistry, pp. 193258 [Johnson, A.D., Gomes, W. R. and Vandermark, N. L., editors]. New York: Academic Press.Google Scholar
Konturek, S. & Grossman, M. I. (1965). Effect of perfusion of intestinal loops with acid, fat or dextrose on gastric secretion. Gastroenterology 4, 481489.CrossRefGoogle Scholar
Koo, S. I. & Turk, D. E. (1977). Effect of Zinc deficiency on intestinal transport of triglyceride in the rat. Journal of Nutrition 107, 909919.CrossRefGoogle ScholarPubMed
Koo, S. I. & Williams, D. A. (1981). Relationship between nutritional status of zinc and cholesterol concentration of serum lipoproteins in adult male rats. American Journal of Clinical Nutrition 34, 23762381.CrossRefGoogle ScholarPubMed
Lei, K. Y., Abbasi, A. & Prasad, A. S. (1976). Function of pituitary-gonadal axis in zinc-deficient rats. American Journal of Physiology 230, 17301732.CrossRefGoogle ScholarPubMed
Long, J. F. & Brooks, F. P. (1965). Relation between inhibition of gastric secretion and absorption of fatty acids. American Journal of Physiology 209, 447451.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, M. J., Farr, A. L. & Randall, R. J. (1951). Protein measurement with Folin-phenol reagent. Journal of Biological Chemistry 238, 39553962.Google Scholar
Macapinlac, M. P., Pearson, W. N., Barney, G. H. & Darby, W. J. (1968). Protein and nucleic acid metabolism in the testes of zinc-deficient rats. Journal of Nutrition 95, 569577.CrossRefGoogle Scholar
McClain, C. J., Gavaler, J. S. & Van Thiel, D. H. (1984). Hypogonadism in the zinc-deficient rat: localization of the functional abnormalities. Journal of Laboratory and Clinical Medicine 104, 10071015.Google ScholarPubMed
McClain, C. J., Kasarskis, E. J. Jr & Allen, J. J. (1985). Functional consequences of zinc deficiency. Progress in Food and Nutrition Science 9, 185226.Google ScholarPubMed
Mejbaum, W. J. (1939). Estimation of small amounts of pentose especially in derivatives of adenylic acid. Zeitschrift für Physiologisch Chemie 258, 117121.CrossRefGoogle Scholar
Millar, M. J., Fischer, M. I., Elocate, P. V. & Mawson, C. A. (1958). Effect of dietary zinc deficiency on reproductive system of male rats. Canadian Journal of Biochemistry and Physiology 36, 557569.CrossRefGoogle ScholarPubMed
Moran, J. R. & Lyerly, A. (1985). The effects of severe zinc deficiency on intestinal amino acid losses in the rat. Life Sciences 36, 25152521.CrossRefGoogle ScholarPubMed
Nakamura, M., Jensen, B. & Privett, O. S. (1968). Effect of hypophysectomy on fatty acids and lipid classes of rat testes. Endocrinology 82, 137142.CrossRefGoogle ScholarPubMed
Pearse, A. G. E. (1985). Histochemistry- Theoretical and Applied, Vol. 2, pp. 830838. London: Churchill Livingstone.Google Scholar
Perizek, J., Bourshell, J. C., May, M. F., Babicky, A. & Taylor, D. M. (1966). Zinc in the maturing rat testes. Journal of Reproduction and Fertility 12, 501507.CrossRefGoogle Scholar
Petering, H. G., Giroux, E., Choudhry, H. & Menden, E. E. (1982). Consecutive zinc balance trials in growing rats. Biological Trace Elements Research 4, 221232.CrossRefGoogle ScholarPubMed
Prasad, A. S. & Cossack, Z. T. (1984). Zinc supplementation and growth in sickle cell disease. Annals of Internal Medicine 100, 367371.CrossRefGoogle ScholarPubMed
Prasad, A. S., Halstead, J. A. & Nadimi, M. (1961). Syndrome of iron deficiency anemia, hepatosplenomegaly, hypogonadism, dwarfism and geophagia. American Journal of Medicine 31, 532546.CrossRefGoogle ScholarPubMed
Reeves, P. G. (1990). Zinc deficiency and dipeptidyl carboxypeptidase activity. Comparative effects on epididymis and testis of rats. Biological Trace Elements Research 24, 111.CrossRefGoogle ScholarPubMed
Sandstead, H. H., Prasad, A. S., Schubert, A. R., Farid, Z., Miale, A., Bassily, S. & Darby, S. J. (1967). Human zinc deficiency, endocrine manifestations, and response to treatment. American Journal of Clinical Nutrition 20, 422441.CrossRefGoogle ScholarPubMed
Schneider, W. C. (1945). Phosphorus compounds in animal tissues. Extraction of nucleic acid and of pentose nucleic acid. Journal of Biological Chemistry 161, 293303.CrossRefGoogle ScholarPubMed
Somers, M. & Underwood, E. J. (1969). Ribonuclease activity and nucleic acid and protein metabolism in the testes of zinc-deficient rats. Australian Journal of Biological Sciences 22, 12771282.CrossRefGoogle ScholarPubMed
Swenerton, H. & Lucille, S. H. (1968). Severe zinc deficiency in male and female rats. Journal of Nutrition 95, 818.CrossRefGoogle ScholarPubMed
Taneja, S. K. & Arya, P. (1992). Influence of low dietary lipid content on anorexia and [14C]glucose uptake in the intestine of zinc-deficient mice. British Journal of Nutrition 68, 505514.CrossRefGoogle ScholarPubMed
Taneja, S. K., Lath, A. & Arya, P. (1990). Lipid malabsorption as a possible cause of anorexia in zinc-deficient common carp (Cyprinus carpio). Aquaculture 89, 327335.CrossRefGoogle Scholar
Taneja, S. K. & Nirmal, (1980). Histopathology of testes of mice fed on zinc-deficient diet. Indian Journal of Experimental Biology 18, 14111414.Google ScholarPubMed
Terhune, M. W. & Sandstead, H. H. (1972). Decreased RNA polymerase activity in mammalian zinc deficiency. Science 177, 6869.CrossRefGoogle ScholarPubMed
Underwood, E. J. (1977). Trace Elements in Human and Animal Nutrition, 3rd ed., pp. 222236. [Prasad, A.S. and Oberleas, D., editors]. New York: Academic Press.Google Scholar
Underwood, E. J. & Somers, M. (1969). Studies of zinc nutrition in sheep. 1. The relation of zinc to growth, testicular development and spermatogenesis in young rats. Australian Journal of Agricultural Research 20, 889897.CrossRefGoogle Scholar
Walravens, P. A., Krebs, N. F. & Hambridge, K. M. (1983). Linear growth of low income preschool children receiving a zinc supplement. American Journal of Clinical Nutrition 38, 195201.CrossRefGoogle ScholarPubMed
Zilversmit, D. B. & Davis, A. K. (1950). Micromethod of phospholipid by trichloroacetic acid precipitation. Journal of Laboratory and Clinical Medicine 36, 265270.Google Scholar