Skip to main content Accessibility help
×
Home

Iron status and associations with physical performance during basic combat training in female New Zealand Army recruits

  • Nicola M. Martin (a1) (a2), Cathryn A. Conlon (a2), Rebecca J. M. Smeele (a3), Owen A. R. Mugridge (a2), Pamela R. von Hurst (a2), James P. McClung (a4) and Kathryn L. Beck (a2)...

Abstract

Decreases in Fe status have been reported in military women during initial training periods of 8–10 weeks. The present study aimed to characterise Fe status and associations with physical performance in female New Zealand Army recruits during a 16-week basic combat training (BCT) course. Fe status indicators – Hb, serum ferritin (sFer), soluble transferrin receptor (sTfR), transferrin saturation (TS) and erythrocyte distribution width (RDW) – were assessed at the beginning (baseline) and end of BCT in seventy-six volunteers without Fe-deficiency non-anaemia (sFer <12 µg/l; Hb ≥120 g/l) or Fe-deficiency anaemia (sFer <12 µg/l; Hb <120 g/l) at baseline or a C-reactive protein >10 mg/l at baseline or end. A timed 2·4 km run followed by maximum press-ups were performed at baseline and midpoint (week 8) to assess physical performance. Changes in Fe status were investigated using paired t tests and associations between Fe status and physical performance evaluated using Pearson correlation coefficients. sFer (56·6 (sd 33·7) v. 38·4 (sd 23·8) µg/l) and TS (38·8 (sd 13·9) v. 34·4 (sd 11·5) %) decreased (P<0·001 and P=0·014, respectively), while sTfR (1·21 (sd 0·27) v. 1·39 (sd 0·35) mg/l) and RDW (12·8 (sd 0·6) v. 13·2 (sd 0·7) %) increased (P<0·001) from baseline to end. Hb (140·6 (sd 7·5) v. 142·9 (sd 7·9) g/l) increased (P=0·009) during BCT. At end, sTfR was positively (r 0·29, P=0·012) and TS inversely associated (r –0·32, P=0·005) with midpoint run time. There were no significant correlations between Fe status and press-ups. Storage and functional Fe parameters indicated a decline in Fe status in female recruits during BCT. Correlations between tissue-Fe indicators and run times suggest impaired aerobic fitness. Optimal Fe status appears paramount for enabling success in female recruits during military training.

Copyright

Corresponding author

*Corresponding author: Dr K. L. Beck, email k.l.beck@massey.ac.nz

Footnotes

Hide All

The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official views or opinions of the New Zealand Defence Force.

The views, opinions and/or findings in this report are those of the authors and should not be construed as official Department of the Army or Department of Defense position, policy or decision unless so designated by other official designation.

Footnotes

References

Hide All
1. McClung, JP & Murray-Kolb, LE (2013) Iron nutrition and premenopausal women: effects of poor iron status on physical and neuropsychological performance. Annu Rev Nutr 33, 271288.
2. Heath, AL, Skeaff, CM, Williams, S, et al. (2001) The role of blood loss and diet in the aetiology of mild iron deficiency in premenopausal adult New Zealand women. Public Health Nutr 4, 197206.
3. Harvey, LJ, Armah, CN, Dainty, JR, et al. (2005) Impact of menstrual blood loss and diet on iron deficiency among women in the UK. Br J Nutr 94, 557564.
4. Peeling, P, Dawson, B, Goodman, C, et al. (2008) Athletic induced iron deficiency: new insights into the role of inflammation, cytokines and hormones. Eur J Appl Physiol 103, 381391.
5. Shephard, RJ (2016) Exercise proteinuria and hematuria: current knowledge and future directions. J Sports Med Phys Fitness 56, 10601076.
6. DellaValle, DM & Haas, JD (2011) Impact of iron depletion without anemia on performance in trained endurance athletes at the beginning of a training season: a study of female collegiate rowers. Int J Sport Nutr Exerc Metab 21, 501506.
7. Dubnov, G & Constantini, NW (2004) Prevalence of iron depletion and anemia in top-level basketball players. Int J Sport Nutr Exerc Metab 14, 3037.
8. Landahl, G, Adolfsson, P, Borjesson, M, et al. (2005) Iron deficiency and anemia: a common problem in female elite soccer players. Int J Sport Nutr Exerc Metab 15, 689694.
9. Parks, RB, Hetzel, SJ & Brooks, MA (2017) Iron deficiency and anemia among collegiate athletes: a retrospective chart review. Med Sci Sports Exerc 49, 17111715.
10. Sinclair, LM & Hinton, PS (2005) Prevalence of iron deficiency with and without anemia in recreationally active men and women. J Am Diet Assoc 105, 975978.
11. McClung, JP, Marchitelli, LJ, Friedl, KE, et al. (2006) Prevalence of iron deficiency and iron deficiency anemia among three populations of female military personnel in the US Army. J Am Coll Nutr 25, 6469.
12. McClung, JP, Karl, JP, Cable, SJ, et al. (2009) Randomized, double-blind, placebo-controlled trial of iron supplementation in female soldiers during military training: effects on iron status, physical performance, and mood. Am J Clin Nutr 90, 124131.
13. Celsing, F, Blomstrand, E, Werner, B, et al. (1986) Effects of iron deficiency on endurance and muscle enzyme activity in man. Med Sci Sports Exerc 18, 156161.
14. Gardner, GW, Edgerton, VR, Senewiratne, B, et al. (1977) Physical work capacity and metabolic stress in subjects with iron deficiency anemia. Am J Clin Nutr 30, 910917.
15. Tufts, DA, Haas, JD, Beard, JL, et al. (1985) Distribution of hemoglobin and functional consequences of anemia in adult males at high altitude. Am J Clin Nutr 42, 111.
16. Brownlie, T, Utermohlen, V, Hinton, PS, et al. (2002) Marginal iron deficiency without anemia impairs aerobic adaptation among previously untrained women. Am J Clin Nutr 75, 734742.
17. Brownlie, T, Utermohlen, V, Hinton, PS, et al. (2004) Tissue iron deficiency without anemia impairs adaptation in endurance capacity after aerobic training in previously untrained women. Am J Clin Nutr 79, 437443.
18. McClung, JP, Karl, JP, Cable, SJ, et al. (2009) Longitudinal decrements in iron status during military training in female soldiers. Br J Nutr 102, 605609.
19. Jones, BH, Hauret, KG, Dye, SK, et al. (2017) Impact of physical fitness and body composition on injury risk among active young adults: a study of Army trainees. J Sci Med Sport 20, Suppl. 4, S17S22.
20. Karl, JP, Lieberman, HR, Cable, SJ, et al. (2010) Randomized, double-blind, placebo-controlled trial of an iron-fortified food product in female soldiers during military training: relations between iron status, serum hepcidin, and inflammation. Am J Clin Nutr 92, 93100.
21. New Zealand Defence Force (2016) More Military Women Programme. Wellington: New Zealand Defence Force.
22. Anderson, GJ & Frazer, DM (2017) Current understanding of iron homeostasis. Am J Clin Nutr 106, 1559S1566S.
23. Department of Health and Ageing and Ministry of Health (2006) Nutrient Reference Values for Australia and New Zealand: Including Recommended Dietary Intakes. Canberra: Commonwealth of Australia.
24. University of Otago and Ministry of Health (2011) Methodology Report for the 2008/09 New Zealand Adult Nutrition Survey. Wellington: Ministry of Health.
25. Stewart, A & Marfell-Jones, M (2011) International Standards for Anthropometric Assessment. Lower Hutt: International Society for the Advancement of Kinanthropometry.
26. Field, AP (2009) Discovering Statistics Using SPSS (and Sex and Drugs and Rock ‘n’ Roll), 4th ed. Los Angeles, CA: SAGE Publications Ltd.
27. Hauschild, VD, DeGroot, DW, Hall, SM, et al. (2017) Fitness tests and occupational tasks of military interest: a systematic review of correlations. Occup Environ Med 74, 144153.
28. Ashenden, MJ, Martin, DT, Dobson, GP, et al. (1998) Serum ferritin and anemia in trained female athletes. Int J Sport Nutr 8, 223229.
29. Hinton, PS, Giordano, C, Brownlie, T, et al. (2000) Iron supplementation improves endurance after training in iron-depleted, nonanemic women. J Appl Physiol (1985) 88, 11031111.
30. Blacker, SD, Wilkinson, DM, Bilzon, JL, et al. (2008) Risk factors for training injuries among British Army recruits. Mil Med 173, 278286.
31. Hall, LJ (2017) Relationship between 1.5-mile run time, injury risk and training outcome in British Army recruits. J R Army Med Corps 163, 376382.
32. Jones, BH & Hauschild, VD (2015) Physical training, fitness, and injuries: lessons learned from military studies. J Strength Cond Res 29, Suppl. 11, S57S64.
33. Nindl, BC, Jones, BH, Van Arsdale, SJ, et al. (2016) Operational physical performance and fitness in military women: physiological, musculoskeletal injury, and optimized physical training considerations for successfully integrating women into combat-centric military occupations. Mil Med 181, 5062.
34. Lisman, PJ, de la Motte, SJ, Gribbin, TC, et al. (2017) A systematic review of the association between physical fitness and musculoskeletal injury risk: part 1-cardiorespiratory endurance. J Strength Cond Res 31, 17441757.
35. University of Otago and Ministry of Health (2011) A Focus on Nutrition: Key Findings of the 2008/09 New Zealand Adult Nutrition Survey. Wellington: Ministry of Health.
36. Dubnov, G, Foldes, AJ, Mann, G, et al. (2006) High prevalence of iron deficiency and anemia in female military recruits. Mil Med 171, 866869.
37. Israeli, E, Merkel, D, Constantini, N, et al. (2008) Iron deficiency and the role of nutrition among female military recruits. Med Sci Sports Exerc 40, S685S690.
38. Zimmermann, MB & Hurrell, RF (2007) Nutritional iron deficiency. Lancet 370, 511520.
39. World Health Organization (2017) Nutritional Anaemias: Tools for Effective Prevention and Control. Geneva: World Health Organization.
40. Beard, J & Tobin, B (2000) Iron status and exercise. Am J Clin Nutr 72, 594s597s.
41. Telford, RD, Sly, GJ, Hahn, AG, et al. (2003) Footstrike is the major cause of hemolysis during running. J Appl Physiol (1985) 94, 3842.
42. Park, CH, Valore, EV, Waring, AJ, et al. (2001) Hepcidin, a urinary antimicrobial peptide synthesized in the liver. J Biol Chem 276, 78067810.
43. Nemeth, E, Tuttle, MS, Powelson, J, et al. (2004) Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science 306, 20902093.
44. Roecker, L, Meier-Buttermilch, R, Brechtel, L, et al. (2005) Iron-regulatory protein hepcidin is increased in female athletes after a marathon. Eur J Appl Physiol 95, 569571.
45. Peeling, P, Dawson, B, Goodman, C, et al. (2009) Cumulative effects of consecutive running sessions on hemolysis, inflammation and hepcidin activity. Eur J Appl Physiol 106, 5159.
46. Peeling, P, Sim, M, Badenhorst, CE, et al. (2014) Iron status and the acute post-exercise hepcidin response in athletes. PLOS ONE 9, e93002.
47. Sim, M, Dawson, B, Landers, G, et al. (2012) The effects of carbohydrate ingestion during endurance running on post-exercise inflammation and hepcidin levels. Eur J Appl Physiol 112, 18891898.
48. Newlin, MK, Williams, S, McNamara, T, et al. (2012) The effects of acute exercise bouts on hepcidin in women. Int J Sport Nutr Exerc Metab 22, 7988.
49. Peeling, P, McKay, AKA, Pyne, DB, et al. (2017) Factors influencing the post-exercise hepcidin-25 response in elite athletes. Eur J Appl Physiol 117, 12331239.
50. Peeling, P (2010) Exercise as a mediator of hepcidin activity in athletes. Eur J Appl Physiol 110, 877883.
51. Dallman, PR (1986) Biochemical basis for the manifestations of iron deficiency. Annu Rev Nutr 6, 1340.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed