Skip to main content Accessibility help
×
Home

Iron intakes of Australian infants and toddlers: findings from the Melbourne Infant Feeding, Activity and Nutrition Trial (InFANT) Program

  • Linda A. Atkins (a1), Sarah A. McNaughton (a1), Karen J. Campbell (a1) and Ewa A. Szymlek-Gay (a1)

Abstract

Fe deficiency remains the most common nutritional deficiency worldwide and young children are at particular risk. Preventative food-based strategies require knowledge of current intakes, sources of Fe, and factors associated with low Fe intakes; yet few data are available for Australian children under 2 years. This study’s objectives were to determine intakes and food sources of Fe for Australian infants and toddlers and identify non-dietary factors associated with Fe intake. Dietary, anthropometric and socio-demographic data from the Melbourne Infant Feeding, Activity and Nutrition Trial Program were analysed for 485 infants (mean age: 9·1 (sd 1·2) months) and 423 toddlers (mean age: 19·6 (sd 2·6) months) and their mothers. Dietary intakes were assessed via 24-h recalls over 3 non-consecutive days. Prevalence of inadequate Fe intake was estimated using the full probability approach. Associations between potential non-dietary predictors (sex, breast-feeding status, age when introduced to solid foods, maternal age, maternal education, maternal employment status and mother’s country of birth) and Fe intakes were assessed using linear regression. Mean Fe intakes were 9·1 (sd 4·3) mg/d for infants and 6·6 (sd 2·4) mg/d for toddlers. Our results showed that 32·6 % of infants and 18·6 % of toddlers had inadequate Fe intake. Main food sources of Fe were Fe-fortified infant formula and cereals for infants and toddlers, respectively. Female sex and current breast-feeding were negatively associated with infant Fe intakes. Introduction to solid foods at or later than 6 months was negatively associated with Fe intake in toddlers. These data may facilitate food-based interventions to improve Australian children’s Fe intake levels.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Iron intakes of Australian infants and toddlers: findings from the Melbourne Infant Feeding, Activity and Nutrition Trial (InFANT) Program
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Iron intakes of Australian infants and toddlers: findings from the Melbourne Infant Feeding, Activity and Nutrition Trial (InFANT) Program
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Iron intakes of Australian infants and toddlers: findings from the Melbourne Infant Feeding, Activity and Nutrition Trial (InFANT) Program
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Dr E. A. Szymlek-Gay, fax +61 3 9244 6017, email ewa.szymlekgay@deakin.edu.au

References

Hide All
1. McLean, E, Cogswell, M, Egli, I, et al. (2009) Worldwide prevalence of anaemia, WHO Vitamin and Mineral Nutrition Information System, 1993–2005. Public Health Nutr 12, 444454.
2. World Health Organization, United Nations Children’s Fund, United Nations University (2001) Iron Deficiency Anaemia: Assessment, Prevention and Control. A Guide for Programme Managers, no. WHO/NHD/01.3. Geneva: WHO.
3. Institute for Health Metrics and Evaluation (2013) Global Burden of Disease Profile: Australia. Seattle, WA: Institute for Health Metrics and Evaluation.
4. Oti-Boateng, P, Seshadri, R, Petrick, S, et al. (1998) Iron status and dietary iron intake of 6-24-month-old children in Adelaide. J Paediatr Child Health 34, 250253.
5. Zhou, SJ, Gibson, RA, Gibson, RS, et al. (2012) Nutrient intakes and status of preschool children in Adelaide, South Australia. Med J Aust 196, 696700.
6. Karr, M, Alperstein, G, Causer, J, et al. (1996) Iron status and anaemia in preschool children in Sydney. Aust N Z J Public Health 20, 618622.
7. Nguyen, ND, Allen, JR, Peat, JK, et al. (2004) Iron status of young Vietnamese children in Australia. J Paediatr Child Health 40, 424429.
8. Georgieff, MK (2011) Long-term brain and behavioral consequences of early iron deficiency. Nutr Rev 69, S43S48.
9. Rao, R & Georgieff, MK (2007) Iron in fetal and neonatal nutrition. Semin Fetal Neonatal Med 12, 5463.
10. Beard, JL (2008) Why iron deficiency is important in infant development. J Nutr 138, 25342536.
11. Grantham-McGregor, S & Ani, C (2001) A review of studies on the effect of iron deficiency on cognitive development in children. J Nutr 131, 649S668S.
12. Lozoff, B, Beard, J, Connor, J, et al. (2006) Long-lasting neural and behavioral effects of iron deficiency in infancy. Nutr Rev 64, S34S43.
13. Lukowski, AF, Koss, M, Burden, MJ, et al. (2010) Iron deficiency in infancy and neurocognitive functioning at 19 years: evidence of long-term deficits in executive function and recognition memory. Nutr Neurosci 13, 5470.
14. Deinard, AS, List, A, Lindgren, B, et al. (1986) Cognitive deficits in iron-deficient and iron-deficient anemic children. J Pediatr 108, 681689.
15. Lozoff, B & Georgieff, MK (2006) Iron deficiency and brain development. Semin Pediatr Neurol 13, 158165.
16. McCann, JC & Ames, BN (2007) An overview of evidence for a causal relation between iron deficiency during development and deficits in cognitive or behavioral function. Am J Clin Nutr 85, 931945.
17. Dallman, PR (1992) Changing iron needs from birth through adolescence. In Nutritional Anemias, Nestle Nutrition Workshop Series, 30, pp. 2938 [SJ Fomon and S Zlotkin, editors]. New York: Vevey/Raven Press.
18. Aggett, PJ, Agostoni, C, Axelsson, I, et al. (2002) Iron metabolism and requirements in early childhood: do we know enough?: a commentary by the ESPGHAN Committee on Nutrition. J Pediatr Gastroenterol Nutr 34, 337345.
19. Hallberg, L, Hoppe, M, Andersson, M, et al. (2003) The role of meat to improve the critical iron balance during weaning. Pediatrics 111, 864870.
20. Byrne, R, Magarey, A & Daniels, L (2014) Food and beverage intake in Australian children aged 12–16 months participating in the NOURISH and SAIDI studies. Aust N Z J Public Health 38, 326331.
21. Conn, JA, Davies, MJ, Walker, RB, et al. (2009) Food and nutrient intakes of 9-month-old infants in Adelaide, Australia. Public Health Nutr 12, 24482456.
22. Hitchcock, NE, Owles, EN & Gracey, M (1982) Dietary energy and nutrient intakes and growth of healthy Australian infants in the first year of life. Nutr Res 2, 1319.
23. Webb, K, Rutishauser, I, Katz, T, et al. (2005) Meat consumption among 18-month-old children participating in the Childhood Asthma Prevention Study. Nutr Diet 62, 1220.
24. Webb, K, Rutishauser, I & Knezevic, N (2008) Foods, nutrients and portions consumed by a sample of Australian children aged 16-24 months. Nutr Diet 65, 5665.
25. Bramhagen, A-C, Svahn, J, Hallström, I, et al. (2011) Factors influencing iron nutrition among one-year-old healthy children in Sweden. J Clin Nurs 20, 18871894.
26. Gibson, SA (1999) Iron intake and iron status of preschool children: associations with breakfast cereals, vitamin C and meat. Public Health Nutr 2, 521528.
27. Campbell, KJ, Lioret, S, McNaughton, SA, et al. (2013) A parent-focused intervention to reduce infant obesity risk behaviors: a randomized trial. Pediatrics 131, 652660.
28. Campbell, K, Hesketh, K, Crawford, D, et al. (2008) The Infant Feeding Activity and Nutrition Trial (InFANT) an early intervention to prevent childhood obesity: cluster-randomised controlled trial. BMC Public Health 8, 103103.
29. World Health Organization (2000) Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation on Obesity. Geneva: WHO.
30. Lioret, S, McNaughton, SA, Spence, AC, et al. (2013) Tracking of dietary intakes in early childhood: the Melbourne InFANT program. Eur J Clin Nutr 67, 275281.
31. Food Standards Australia New Zealand (2008) AUSNUT 2007 – Australian Food, Supplement and Nutrient Database for Estimation of Population Nutrient Intakes. Canberra: FSANZ.
32. Emmett, P, North, K & Noble, S (2000) Types of drinks consumed by infants at 4 and 8 months of age: a descriptive study. The ALSPAC Study Team. Public Health Nutr 3, 211217.
33. Food and Nutrition Board: Institute of Medicine (2001) Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Washington, DC: National Academy Press.
34. World Health Organization/Food and Agriculture Organization of the United Nations (2006) Guidelines on Food Fortification with Micronutrients. Geneva: WHO.
35. Nusser, SM, Carriquiry, AL, Dodd, KW, et al. (1996) A semiparametric transformation approach to estimating usual daily intake distributions. J Am Stat Assoc 91, 14401449.
36. National Health and Medical Research Council (2006) Nutrient Reference Values for Australia and New Zealand Including Recommended Dietary Intakes. Canberra: Commonwealth of Australia.
37. National Health and Medical Research Council (2012) Eat for Health. Infant Feeding Guidelines: Information for Health Workers . Canberra: Commonwealth of Australia.
38. World Health Organization Multicentre Growth Reference Study Group (2006) WHO Child Growth Standards: Methods and Development: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age. Geneva: WHO.
39. Butte, NF, Fox, MK, Briefel, RR, et al. (2010) Nutrient intakes of US infants, toddlers, and preschoolers meet or exceed dietary reference intakes. J Am Diet Assoc 110, S27S37.
40. Devaney, B, Ziegler, P, Pac, S, et al. (2004) Nutrient intakes of infants and toddlers. J Am Diet Assoc 104, SS14SS21.
41. Soh, P, Ferguson, EL, McKenzie, JE, et al. (2002) Dietary intakes of 6–24-month-old urban South Island New Zealand children in relation to biochemical iron status. Public Health Nutr 5, 339346.
42. Fisher, JO, Butte, NF, Mendoza, PM, et al. (2008) Overestimation of infant and toddler energy intake by 24-h recall compared with weighed food records. Am J Clin Nutr 88, 407415.
43. Gordon, N (2003) Iron deficiency and the intellect. Brain Dev 25, 38.
44. Butte, NF, Lopez-Alarcon, MG & Garza, C (2002) Nutrient Adequacy of Exclusive Breastfeeding for the Term Infant During the First Six Months of Life. Geneva: WHO.
45. Food Standards Australia New Zealand (2014) Standard 2.9.1 – infant formula products. http://www.comlaw.gov.au/Details/F2014C01200 (accessed April 2015).
46. Fox, MK, Pac, S, Devaney, B, et al. (2004) Feeding infants and toddlers study: what foods are infants and toddlers eating? J Am Diet Assoc 104, S22S30.
47. Szymlek-Gay, EA, Ferguson, EL, Heath, AL, et al. (2009) Food-based strategies improve iron status in toddlers: a randomized controlled trial. Am J Clin Nutr 90, 15411551.
48. Szymlek-Gay, EA, Ferguson, EL, Heath, AM, et al. (2010) Quantities of foods consumed by 12- to 24-month-old New Zealand children. Nutr Diet 67, 244250.
49. Scientific Advisory Committee on Nutrition (2010) Iron and Health. London: TSO.
50. Thorsdottir, I, Gunnarsson, B, Atladottir, H, et al. (2003) Iron status at 12 months of age-effects of body size, growth and diet in a population with high birth weight. Eur J Clin Nutr 57, 505513.
51. Thane, CW, Walmsley, CM, Bates, CJ, et al. (2000) Risk factors for poor iron status in British toddlers: further analysis of data from the national diet and nutrition survey of children aged 1.5–4.5 years. Public Health Nutr 3, 433440.
52. Gunnarsson, BS, Thorsdottir, I, Palsson, G, et al. (2007) Iron status at 1 and 6 years versus developmental scores at 6 years in a well-nourished affluent population. Acta Paediatr 96, 391395.
53. Spence, AC, McNaughton, SA, Lioret, S, et al. (2013) A health promotion intervention can affect diet quality in early childhood. J Nutr 143, 16721678.
54. Biró, G, Hulshof, KF, Ovesen, L, et al. (2002) Selection of methodology to assess food intake. Eur J Clin Nutr 56, S25S32.
55. Magarey, A, Watson, J, Golley, RK, et al. (2011) Assessing dietary intake in children and adolescents: considerations and recommendations for obesity research. Int J Pediatr Obes 6, 211.

Keywords

Type Description Title
WORD
Supplementary materials

Atkins supplementary material
Appendices

 Word (89 KB)
89 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed