Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-25T19:18:36.707Z Has data issue: false hasContentIssue false

Influences of dietary sucrose and urea on transfer of endogenous urea to the rumen of sheep and numbers of epithelial bacteria

Published online by Cambridge University Press:  09 March 2007

P. M. Kennedy
Affiliation:
Department of Animal Science, The University of Alberta, Edmonton, Alberta T6G 2P5, Canada
R. T. J. Clarke
Affiliation:
Department of Animal Science, The University of Alberta, Edmonton, Alberta T6G 2P5, Canada
L. P. Milligan
Affiliation:
Department of Animal Science, The University of Alberta, Edmonton, Alberta T6G 2P5, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The rates of transfer of plasma urea to the rumen of six sheep given brome grass (Bromus inermis) pellets alone or with supplements of sucrose or urea were determined using [14C]urea and 14C-labelled sodium bicarbonate infusions during three periods.

2. The sheep were slaughtered after the third period and samples of rumen epithelium were taken for assessment of numbers of adherent bacteria.

3. Maximum transfer (0·31 g nitrogen/h) of urea to the rumen was observed for sheep given supplements of 150 g sucrose/d plus 20 g urea/d. Maximum clearance of plasma urea to the rumen (rate of urea transfer to the rumen per unit plasma urea concentration, 5·8 1/h) was observed for sheep given 300 g sucrose/d.

4. Urea clearance to the rumen was negatively related to rumen ammonia concentration; the slope of the relationship was increased with each addition of sucrose to the diet.

5. Numbers of facultative bacteria adherent to the rumen epithelium were increased by urea and sucrose supplements.

6. The results are discussed in relation to a hypothesis which relates the ureolytic capability of the bacteria adherent to the rumen epithelium to the control of the rate of transfer of urea into the rumen.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

Baird-Parker, A. C. (1966). In Identification Methods for Microbiologists, part A, p. 59 [Norris, J. R. and Ribbons, D. W. editors]. London and New York: Academic Press.Google Scholar
Bauchop, T., Clarke, R. T. J. & Newhook, J. C. (1975). Appl. Microbiol. 30, 668.CrossRefGoogle Scholar
Bryant, M. P. & Robinson, I. M. (1961). J. Dairy Sci. 44, 1446.CrossRefGoogle Scholar
Buchanan, R. E. & Gibbons, N. E. (1974). (editors). Bergey's Manual of Determinative Bacteriology, Baltimore: Williams and Wilkins.Google Scholar
Cheng, K.-J., McCowan, R. P. & Costerton, J. W. (1979). Am. J. clin. Nutr. 32, 139.CrossRefGoogle Scholar
Cheng, K.-J. & Wallace, R. J. (1979). Br. J. Nutr. 42, 553.CrossRefGoogle Scholar
Cook, A. R. (1976). J. gen. Microbiol. 92, 32.CrossRefGoogle Scholar
Engelhardt, W. v., Hinderer, S. & Wipper, E. (1978). In Ruminant Digestion and Feed Evaluation p. 41 [Osbourn, D. F.Beever, D. E. and Thomson, D. J. editors]. London: Agricultural Research Council.Google Scholar
Gorin, G. & Chin, C. C. (1966). Analyt. Biochem. 17, 49.CrossRefGoogle Scholar
Harrigan, W. F. & McCance, M. E. (1966). Laboratory Methods in Microbiology. London and New York: Academic Press.Google Scholar
Houpt, T. R. (1970). Physiology of Digestion and Metabolism in the Ruminant. p. 119 [Phillipson, A. T. editor]. Newcastle-upon-Tyne: Oriel Press.Google Scholar
Hungate, R. E. (1966). The Rumen and its Microbes. London and New York: Academic Press.Google Scholar
Hungate, R. E. (1969). In Methods in Microbiology, vol. 3B, p. 117 [Norris, J. R. and Ribbons, D. W. editors]. 0London and New York: Academic Press.Google Scholar
Kennedy, P. M. (1980). Br. J. Nutr. 43, 125.CrossRefGoogle Scholar
Kennedy, P. M. & Milligan, L. P. (1978). Br. J. Nutr. 40, 149.CrossRefGoogle Scholar
Kennedy, P. M. & Milligan, L. P. (1980). Can. J. Anim. Sci. 60, 305.Google Scholar
McCowan, R. P., Cheng, K.-J., Eailey, C. B. M. & Costerton, J. W. (1978). Appl. Environ. Microbiol. 35, 149.CrossRefGoogle Scholar
McCowan, R. P., Cheng, K.-J. & Costerton, J. W. (1980). Appl. Environ. Microbiol. 39, 233.CrossRefGoogle Scholar
MacRae, J. C., Milne, J. A., Wilson, S. & Spence, A. M. (1979). Br. J. Nutr. 42, 525.CrossRefGoogle Scholar
Mahadevan, S., Sauer, F. & Erfle, J. D. (1976). J. Anim. Sci. 42, 745.CrossRefGoogle Scholar
Nolan, J. V. & Leng, R. A. (1972). Br. J. Nutr. 27, 177.CrossRefGoogle Scholar
Nolan, J. V. & Stachiw, S. (1979). Br. J. Nutr. 42, 63.CrossRefGoogle Scholar
Norton, B. W., Moran, J. B. & Nolan, J. V. (1979). Aust. J. agric. Res. 30, 341.CrossRefGoogle Scholar
Norton, B. W., Murray, R. M., Entwistle, K. W., Nolan, J. V., Ball, F. M. & Leng, R. A. (1978). Aust. J. agric. Res. 29, 595.CrossRefGoogle Scholar
Turner, B. V., Kerrigan, B., Kennedy, P. M. & Oldham, J. D. (1980). Can. J. Anim. Sci. 60, 803.CrossRefGoogle Scholar
Umbreit, W. W., Burris, R. H. & Stauffer, J. F. (editors). (1964). Manometric Techniques. Minneapolis: Burgess Publishing Co.Google Scholar
Wallace, R. J., Cheng, K.-J., Dinsdale, D. & Orskov, E. R. (1979). Nature, New Biol. 279, 424.CrossRefGoogle Scholar
Wozny, M. A., Bryant, M. P., Holdeman, L. V. & Moore, W. E. C. (1977). Appl. Environ. Microbiol. 33, 1097.CrossRefGoogle Scholar