Skip to main content Accessibility help
×
Home

Influence of plant and bacterial myrosinase activity on the metabolic fate of glucosinolates in gnotobiotic rats

  • Gabrielle Rouzaud (a1), Sylvie Rabot (a2), Brian Ratcliffe (a3) and Alan J. Duncan (a1)

Abstract

The breakdown of glucosinolates, a group of thioglucoside compounds found in cruciferous plants, is catalysed by dietary or microbial myrosinase. This hydrolysis releases a range of breakdown products among which are the isothiocyanates, which have been implicated in the cancer-protective effects of cruciferous vegetables. The respective involvement of plant myrosinase and gut bacterial myrosinase in the conversion, in vivo, of glucosinolates into isothiocyanates was investigated in sixteen Fischer 344 rats. Glucosinolate hydrolysis in gnotobiotic rats harbouring a whole human faecal flora (Flora+) was compared with that in germ-free rats (Flora−). Rats were offered a diet where plant myrosinase was either active (Myro+) or inactive (Myro−). The conversion of prop-2-enyl glucosinolate and benzyl glucosinolate to their related isothiocyanates, allyl isothiocyanate and benzyl isothiocyanate, was estimated using urinary mercapturic acids, which are endproducts of isothiocyanate metabolism. The highest excretion of urinary mercapturic acids was found when only plant myrosinase was active (Flora−, Myro+ treatment). Lower excretion was observed when both plant and microbial myrosinases were active (Flora+, Myro+ treatment). Excretion of urinary mercapturic acids when only microbial myrosinase was active (Flora+, Myro− treatment) was low and comparable with the levels in the absence of myrosinase (Flora−, Myro− treatment). No intact glucosinolates were detected in the faeces of rats from the Flora+ treatments confirming the strong capacity of the microflora to break down glucosinolates. The results confirm that plant myrosinase can catalyse substantial release of isothiocyanates in vivo. The results also suggest that the human microflora may, in some circumstances, reduce the proportion of isothiocyanates available for intestinal absorption.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Influence of plant and bacterial myrosinase activity on the metabolic fate of glucosinolates in gnotobiotic rats
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Influence of plant and bacterial myrosinase activity on the metabolic fate of glucosinolates in gnotobiotic rats
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Influence of plant and bacterial myrosinase activity on the metabolic fate of glucosinolates in gnotobiotic rats
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Alan J. Duncan, fax +44 1224 311556, email a.duncan@macaulay.ac.uk

References

Hide All
Beecher, CWW (1994) Cancer preventive properties of varieties of Brassica oleracea: a review. Am J Clin Nutr 59, Suppl., 1166S1170S.
Coates, ME (1968) The Germ-free Animal in Research. London: Academic Press.
Combourieu, B, Elfoul, L, Delort, AM & Rabot, S (2001) Identification of new derivatives of sinigrin and glucotropaeolin produced by the human digestive microflora using (1)H NMR spectroscopy analysis of in vitro incubations. Drug Metab Dispos 29, 14401445.
Conaway, CC, Yang, YM & Chung, FL (2002) Isothiocyanates as cancer chemopreventive agents: Their biological activities and metabolism in rodents and humans. Curr Drug Metab 3, 233255.
Debure, A, Colombel, JF, Flourie, B, Rautureau, M & Rambaud, JC (1989) Comparaison de l'implantation et de l'activité métabolique d'une flore fécale de rat et d'une flore fécale humaine, inoculée chez le rat axénique (Comparison of the composition and metabolic activities of a rat and a human faecal flora inoculated into germ-free rats). Gastroenterol Clin Biol 13, 2531.
Dekker, M, Verkerk, R & Jongen, WMF (2000) Predictive modelling of health aspects in the food production chain: a case study on glucosinolates in cabbage. Trends Food Sci Technol 11, 174181.
Duncan, AJ, Rabot, S & Nugon-Baudon, L (1995) Urinary mercapturic acids as markers for the estimation of isothiocyanate release from parent glucosinolates in the digestive tract of rats. In Proceedings of the 9th International Rapeseed Congress, Rapeseed Today and Tomorrow, pp. 928929 [Murphy, D, editor] Cambridge, UK: Royal Society of Chemistry.
Duncan, AJ, Rabot, S & Nugon-Baudon, L (1997) Urinary mercapturic acids as markers for the determination of isothiocyanate release from glucosinolates in rats fed a cauliflower diet. J Sci Food Agric 73, 214220.
Elfoul, L (1999) Bioconversion de la Sinigrine, Microconstitutant des Légumes Crucifères, par une Souche Colique Humaine de Bacteroides Thetaiotaomicron (Bioconversion of Sinigrin, a Microconstituent of Brassica Vegetables, by a Human Colonic Strain of Bacteroides Thetaiotatomicron). PhD thesis. Orsay, France: Université de Paris-Sud
Elfoul, L, Rabot, S, Khelifa, N, Quinsac, A, Duguay, A & Rimbault, A (2001) Formation of allyl isothiocyanate from sinigrin in the digestive tract of rats monoassociated with a human colonic strain of Bacteroides thetaiotaomicron. FEMS Microbiol Lett 197, 99103.
Fenwick, GR, Heaney, RK & Mullin, WJ (1983) Glucosinolates and their breakdown products in food and food plants. CRC Critical Rev Food Sci Nutr 18, 123201.
Getahun, SM & Chung, F-L (1999) Conversion of glucosinolates to isothiocyanates in humans after ingestion of cooked watercress. Cancer Epidemiol Biomarkers Prev 8, 447451.
Hecht, SS (1999) Chemoprevention of cancer by isothiocyanates, modifiers of carcinogen metabolism. J Nutr 129, 768S774S.
Johnson, IT, Williamson, G & Musk, SRR (1994) Anticarcinogenic factors in plant foods: a new class of nutrients? Nutr Res Rev 7, 175204.
Krul, C, Humblot, C & Philippe, C (2002) Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large intestinal model. Carcinogenesis 23, 10091016.
Ludikhuyze, L, Ooms, V, Weemaes, C & Hendrickx, M (1999) Kinetic study of the irreversible thermal and pressure inactivation of myrosinase from broccoli (Brassica oleracea L-Cv. Italica). J Agric Food Chem 47, 17941800.
Mallett, AK, Bearne, CA, Rowland, IR, Farthing, MJG, Cole, CB & Fuller, R (1987) The use of rats associated with a human fecal flora as a model for studying the effects of diet on the human gut microflora. J Appl Bacteriol 63, 3945.
Mennicke, WH, Görler, K & Krumbiegel, G (1983) Metabolism of some naturally occurring isothiocyanates in the rat. Xenobiotica 13, 203207.
Mennicke, WH, Kral, T, Krumbiegel, G & Rittmann, N (1987) Determination of N-acetyl-S-(N-alkylthiocarbamoyl)-L-cysteine, a principal metabolite of alkyl isothiocyanates, in rat urine. J Chromatogr 414, 1924.
Meselhy, MR, Nakamura, N & Hattori, M (1997) Biotransformation of (-)epicatechin 3-O-gallate by human intestinal bacteria. Chem Pharm Bull 45, 888893.
Michaelsen, S, Otte, J, Simonsen, L-O & Sørensen, H (1994) Absorption and degradation of individual intact glucosinolates in the digestive tract of rodents. Acta Agric Scand 44A, 2537.
Minchinton, IR, Sang, JP, Burke, D & Truscott, RJW (1982) Separation of desulphoglucosinolates by reversed-phase high-performance liquid chromatography. J Chromatogr 247, 141148.
Rabot, S, Guerin, C, Nugon-Baudon, L & Szylit, O (1995) Glucosinolate degradation by bacterial strains isolated from a human intestinal microflora. In Proceedings of the 9th International Rapeseed Congress, Rapeseed Today and Tomorrow, pp. 212214 [Murphy, D, editor] Cambridge, UK: Royal Society of Chemistry.
Rumney, CJ, Rowland, IR & O'Neil, IK (1993) Conversion of IQ to 7OHIQ by gut microflora. Nutr Cancer 27, 250255.
Shapiro, TA, Fahey, JW, Wade, KL, Stephenson, KK & Talalay, P (1998) Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. Cancer Epidemiol Biomarkers Prev 7, 10911100.
Shapiro, TA, Fahey, JW, Wade, KL, Stephenson, KK & Talalay, P (2001) Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans. Cancer Epidemiol Biomarkers Prev 10, 501508.
Smith, TK, Lund, EK, Musk, SRR & Johnson, IT (1998) Inhibition of DMH induced aberrant crypt foci and induction of apoptosis in rat colon, following oral administration of a naturally occurring glucosinolate. Carcinogenesis 19, 967973.
Spinks, EA, Sones, K & Fenwick, GR (1984) The quantitative analysis of glucosinolates in cruciferous vegetables, oilseeds and forage crops using high performance liquid chromatography. Fette Seifen Anstr 6, 228231.
Steinmetz, KA & Potter, JD (1991) Vegetables, fruit, and cancer. I. Epidemiology. Cancer Causes Control 2, 325357.
Watson, SH & Kohlmeier, L (1999) Crucifera, glucosinolates and colon cancer. FASEB J 13, A919
Zhang, Y & Talalay, P (1994) Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res 54, Suppl., 1976s1981s.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed