Skip to main content Accessibility help
×
Home

Influence of nitrogen source on the fermentation of fibre from barley straw and sugarbeet pulp by ruminal micro-organisms in vitro

  • M. J. Ranilla (a1), M. D. Carro (a1), S. López (a1), C. J. Newbold (a2) and R. J. Wallace (a2)...

Abstract

Incubations were carried out with a batch culture system to study the effects of different N sources on the fermentation by ruminal micro-organisms from Merino sheep of two fibre substrates derived from feedstuffs that differed in their fermentation rate. The substrates were neutral-detergent fibre (NDF) from barley straw and sugarbeet pulp. N sources were ammonia (NH4Cl) and peptides (Trypticase). Three treatments were made by replacing ammonia-N with peptide-N at levels of 0 (AMMO), 33 (PEPLOW) and 66 % (PEPHIGH) of total N. There were no differences (P>0·05) between treatments in NDF degradation for both the barley straw and the sugarbeet pulp. Peptides increased (P<0·05) total volatile fatty acids daily production for both substrates, with greater values (P<0·001) for PEPHIGH than for PEPLOW for the sugarbeet pulp. The presence of peptides also increased (P<0·05) microbial N synthesis compared with AMMO, with PEPHIGH supporting more growth (P<0·001) than PEPLOW when the sugarbeet pulp NDF was fermented. The presence of peptides increased (P<0·01) the amount of solids-associated micro-organisms (SAM)-N for both the barley straw and the sugarbeet pulp fibres, values in the PEPHIGH treatment being higher (P<0·001) than those in PEPLOW. The proportion of SAM-N in the total microbial N was not affected (P>0·05) by the presence of peptides compared with the AMMO treatment, but values were greater for the PEPHIGH compared with the PEPLOW N source, reaching statistical significance (P<0·05) only for the sugarbeet pulp. For liquid-associated micro-organisms, the AMMO treatment resulted in the greatest (P<0·05) proportion of N derived from ammonia for both substrates, with a further decrease (P<0·01) for the PEPHIGH treatment compared with the PEPLOW for the sugarbeet pulp, indicating preferential uptake of peptides when they were available. Microbial growth efficiency (g microbial N/kg NDF degraded) was not affected (P>0·05) by N source. These results indicate that N forms other than ammonia are needed for maximal growth of fibre-digesting ruminal micro-organisms.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Influence of nitrogen source on the fermentation of fibre from barley straw and sugarbeet pulp by ruminal micro-organisms in vitro
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Influence of nitrogen source on the fermentation of fibre from barley straw and sugarbeet pulp by ruminal micro-organisms in vitro
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Influence of nitrogen source on the fermentation of fibre from barley straw and sugarbeet pulp by ruminal micro-organisms in vitro
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr C. L. Girard, fax +1 819 564 5507, email girardch@em.agr.ca

References

Hide All
ANKOM (1998) Procedures for Fibre and In Vitro Analysis. Accessed at www.ankom.com
Association of Official Analytical Chemists (1995) Official Methods of Analysis, 16th ed., Arlington, VA: Association of Official Analytical Chemists.
Atasoglu, C, Valdés, C, Newbold, CJ & Wallace, RJ (1999) Influence of peptides and amino acids on fermentation rate and de novo synthesis of amino acids by mixed micro-organisms from the sheep rumen. British Journal of Nutrition 81, 307314.
Atasoglu, C, Valdés, C, Walker, ND, Newbold, CJ & Wallace, RJ (1998) De novo synthesis of amino acids by the ruminal bacteria, Prevotella bryantii B14, Selenomonas ruminantium HD4, and Streptococcus bovis ES1. Applied and Enviromental Micro-biology 64, 28362843.
Barrie, S & Workman, CT (1984) An automated analytical system for nutritional investigations using N-15 tracers. Spectroscopy International Journal 3, 439447.
Bryant, MP (1973) Nutritional requirements of the predominant rumen cellulolytic bacteria. Federation Proceedings 32, 1809.
Carro, MD, López, S, Valdés, C & Gonzólez, JS (1999) Effect of nitrogen form (casein and urea) on the in vitro degradation of cell walls from six forages. Journal of Animal Physiology and Animal Nutrition 81, 212222.
Carro, MD & Miller, EL (1999) Effect of supplementing a fibre basal diet with different nitrogen forms on ruminal fermentation and microbial growth in an in vitro semicontinuous culture system (RUSITEC). British Journal of Nutrition 82, 149157.
Chikunya, S, Newbold, CJ, Rode, L, Chen, XB & Wallace, RJ (1996) Influence of dietary rumen-degradable protein on bacterial growth in the rumen of sheep receiving different energy sources. Animal Feed Science and Technology 63, 333340.
Craig, WM, Broderick, GA & Ricker, DB (1987) Quantitation of microorganisms associated with the particulate phase of ruminal ingesta. Journal of Nutrition 117, 5662.
Cruz Soto, R, Muhammed, SA, Newbold, CJ, Stewart, CS & Wallace, RJ (1994) Influence of peptides, amino acids and urea on microbial activity in the rumen of sheep receiving grass hay and on the growth of rumen bacteria in vitro. Animal Feed Science and Technology 49, 151161.
Czerkawski, JW (1986) An Introduction to Rumen Studies, Oxford: Pergamon Press.
Dewhurst, RJ, Davies, DR & Merry, RJ (2000) Microbial protein supply from rumen. Animal Feed Science and Technology 85, 121.
Dixon, RM & Chanchai, S (2000) Colonization and source of N substrates used by microorganisms digesting forages incubated in synthetic fibre bags in the rumen. Animal Feed Science and Technology 83, 261272.
Faichney, GJ (1980) Measurements in sheep of the quantity and composition of rumen digesta and the fractional outflow rates of digesta constituents. Australian Journal of Agricultural Research 31, 11291137.
Fay, JF, Cheng, KJ, Hanna, MR, Howarth, RE & Costerton, JW (1980) In vitro digestion of bloat-safe and bloat-causing legumes by rumen microorganisms: gas and foam production. Journal of Dairy Science 63, 12731281.
France, J, Dijkstra, J, Dhanoa, MS, López, S & Bannink, A (2000) Estimating the extent of degradation of ruminal feeds from a description of their gas production profiles observed in vitro: a derivation of models and other mathematical considerations. British Journal of Nutrition 83, 143150.
Fujimaki, T, Kobayashi, M, Wakita, M & Hoshino, S (1989) Influence of amino acid supplement on cellulolysis and microbial yield in sheep rumen. Journal of Animal Physiology and Animal Nutrition 62, 119124.
Goering, MK & Van Soest, PJ (1970) Forage Fiber Analysis (Apparatus, Reagents, Procedures and Some Applications). Agricultural Handbook, no. 379. Washington, DC: Agricultural Research Services, USDA.
Griswold, KE, Hoover, WH, Miller, TK & Thayne, WV (1996) Effect of form of nitrogen on growth of ruminal microbes in continuous culture. Journal of Animal Science 74, 483491.
Hume, ID (1970) Synthesis of microbial protein in the rumen. II. A response to higher volatile fatty acids. Australian Journal of Agricultural Research 21, 297304.
Kernick, BL (1991) The effect of form of nitrogen on the efficiency of protein synthesis by rumen bacteria in continuous culture. PhD Thesis, University of Natal.
Ling, JR & Armstead, IP (1995) The in vivo uptake and metabolism of peptides and amino acids by five species of rumen bacteria. Journal of Applied Microbiology 78, 116124.
McAllan, AB (1991) Carbohydrate and nitrogen metabolism in the forestomachs of steers given untreated or ammonia treated barley straw diets supplemented with urea or urea plus fishmeal. Animal Feed Science and Technology 33, 195208.
Martín-Orüe, SM, Balcells, J, Zakraoui, F & Castrillo, C (1998) Quantification and chemical composition of mixed bacteria harvested from solid fractions of rumen digesta: effect of detachment procedure. Animal Feed Science and Technology 71, 269282.
Merry, RJ & McAllan, AB (1983) A comparison of the chemical composition of mixed bacteria harvested from the liquid and solid fractions of rumen digesta. British Journal of Nutrition 50, 701709.
Merry, RJ, McAllan, AB & Smith, RH (1990) In vitro continuous culture studies on the effect of nitrogen source on rumen microbial growth and fibre digestion. Animal Feed Science and Technology 31, 5564.
Minato, H & Suto, T (1978) Technique for fractionation of bacteria in rumen microbial ecosystem. II. Attachment of bacteria isolated from bovine rumen to cellulose powder in vitro and elution of bacteria attached therefrom. Journal of General and Applied Microbiology 24, 116.
Molina-Alcaide, E, Weisbjerg, MR & Hvelplundy, T (1996) Degradation characteristics of shrubs and the effect of supplementation with urea or protein on microbial production using a continuous-culture system. Journal of Animal Physiology and Animal Nutrition 75, 121132.
Russell, JB, O’Connor, JD, Fox, DG, Van Soest, PJ & Sniffen, CJ (1992) A net carbohydrate and protein system for evaluating cattle diets: I. Ruminal fermentation. Journal of Animal Science 70, 35513561.
Senshu, T, Nakamura, K, Sawa, A, Miura, H & Matsumoto, T (1980) Inoculum for in vitro rumen fermentation and composition of volatile fatty acids. Journal of Dairy Science 63, 305312.
Statistical Analysis Systems (1997) SAS User’s Guide, Statistics, Cary, NC: SAS Institute Inc.
Theodorou, MK, Williams, BA, Dhanoa, MS, McAllan, AB & France, J (1994) A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Animal Feed Science and Technology 48, 185197.
Van Soest, PJ, Robertson, JB & Lewis, BA (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science 71, 35833597.
Wallace, RJ, Atasoglu, C & Newbold, CJ (1999) Role of peptides in rumen microbial metabolism. Asian-Australasian Journal of Animal Science 12, 139147.
Weatherburn, MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry 39, 971974.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed