Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-dxfhg Total loading time: 0.258 Render date: 2021-02-25T17:36:36.593Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Influence of magnesium deficiency on horse foal tissue concentrations of Mg, calcium and phosphorus*

Published online by Cambridge University Press:  09 March 2007

D. D. Harrington
Affiliation:
Department of Veterinary Science, Kentucky Agricultural Experimental Station, University of Kentucky, Lexington, Kentucky 40506, USA
Rights & Permissions[Opens in a new window]

Abstract

1. The effects of feeding with a purified magnesium-deficient diet (−Mg, 7–8 mg Mg/kg) on horse foal blood serum and tissue concentrations of Mg, calcium and phosphorus were studied, and the results compared with histopathological findings.

2. Serum concentrations of Ca and P were unaffected by feeding with the −Mg diet, whereas serum Mg concentrations decreased from a mean initial (day 0) concentration of 0.78 mmol/l to 0.53 mmol/l 7 d after foals were placed on the −Mg diet, and then continued to decrease at a slower rate.

3. Aorta concentrations of Ca and P, but not Mg, were positively correlated with the period of time foals were given the −Mg diet, verifying histopathological findings. Results for both aorta Ca and P analyses and histopathological studies indicated that mineralization of the aorta began approximately 30–35 d after foals were placed on the −Mg diet.

4. Feeding with the −Mg diet had no significant, analytically detectable effect on brain, liver, kidney, lung, spleen, skeletal or cardiac muscle concentrations of Ca, P or Mg, although microscopic evidence of mineralization was seen in some of these tissues from foals given the −Mg diet for 71–180 d.

5. A significant negative correlation was found between bone ash concentrations of Mg (rib, metacarpus and metatarsus) and the length of time foals were fed on the −Mg diet. Bone ash concentrations of Ca and P were, however, unchanged.

6. Low serum Mg values and negative correlations between the bone ash concentration of Mg and the period of time foals were fed on the −Mg diet supplemented with 390 mg Mg as MgO/kg were interpreted as suggesting that either this level of Mg supplementation is marginal for the growing foal, or that the Mg in MgO is not readily available to the growing foal.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1975

References

Aikawa, J. K., Reardon, J. Z. & Harms, D. R. (1962). J. Nutr. 76, 90.CrossRefGoogle Scholar
Blaxter, K. L., Rook, J. A. F. & MacDonald, A. M. (1954). J. comp. Path. Ther. 64, 157.CrossRefGoogle Scholar
Bradbury, M. W. B., Kleeman, C. R., Bagdoyan, H. & Berberian, A. (1968). J. Lab. clin. Med. 71, 884.Google Scholar
Breibart, S., Lee, J. S., McCoord, A. & Forbes, G. B. (1960). Proc. Soc. exp. Biol. Med. 105, 361.CrossRefGoogle Scholar
Britton, W. M. & Stokstad, E. L. R. (1970). J. Nutr. 100, 1501.Google Scholar
Bunce, G. E., Chiemchaisri, Y. & Phillips, P. H. (1962). J. Nutr. 76, 23.CrossRefGoogle Scholar
Bunce, G. E., Jenkins, K. J. & Phillips, P. H. (1962). J. Nutr. 76, 17.Google Scholar
Duckworth, J. & Godden, W. (1941). Biochem. J. 35, 816.CrossRefGoogle Scholar
Fiske, C. H. & Subbarow, Y. (1925). J. biol. Chem. 66, 375.Google Scholar
Gerken, H. J. & Fontenot, J. P. (1967). J. Anim. Sci. 26, 1404.CrossRefGoogle Scholar
Grace, N. D. & O'Dell, B. L. (1970). J. Nutr. 100, 37.Google Scholar
Green, H. H., Allcroft, W. M. & Montgomerie, R. F. (1935). J. comp. Path. Ther. 48, 74.CrossRefGoogle Scholar
Hamuro, Y., Shino, A. & Suzuoki, Z. (1970). J. Nutr. 100, 404.CrossRefGoogle Scholar
Harrington, D. D. (1974). Am. J. vet. Res. 35, 503.Google Scholar
Harrington, D. D., Walsh, J. J., Marroquin, C. R. & White, V. (1973). J. Anim. Sci. 37, 280.Google Scholar
Heggtveit, H. A. (1969). Ann. N. Y. Acad. Sci. 162, 758.CrossRefGoogle Scholar
Hill, J. B. (1962). Ann. N. Y. Acad. Sci. 102, 108.CrossRefGoogle Scholar
Hunt, C. E. & Harrington, D. D. (1974). Biology of the Laboratory Rabbit, ch. 16 p. 403. New York: Academic Press Inc.CrossRefGoogle Scholar
Jacob, M. & Forbes, R. M. (1970). J. Nutr. 100, 228.CrossRefGoogle Scholar
Johnson, L. C. (1966). Birth Defects: Structural Organization of the Skeleton Symposium, vol. 2, p. 66.Google Scholar
Kessler, G. & Wolfman, M. (1964). Clin. Chem. 10, 686.Google Scholar
Kunkel, H. O. & Pearson, P. B. (1948 a). Archs Biochem. 18, 461.Google Scholar
Kunkel, H. O. & Pearson, P. B. (1948 b). J. Nutr. 36, 657.CrossRefGoogle Scholar
Lansing, A. I., Alex, M. & Rosenthal, T. B. (1950). J. Geront. 5, 112.CrossRefGoogle Scholar
Leblond, C. P., Wilkinson, G. W., Belanger, L. F. & Robichon, J. (1950). Am.J. Anat. 86, 289.CrossRefGoogle Scholar
Looker, T. & Berry, C. L. (1972). J. Anat. 113, 17.Google Scholar
Martin, G. R., Schiffman, E., Bladen, H. A. & Nylen, M. (1963). J. Cell Biol. 16, 243.CrossRefGoogle Scholar
Merker, H. J. & Günther, T. (1970). Z. klin. Chem. 8, 71.Google Scholar
Montgomerie, R. F., Savage, W. H. & Dodd, E. C. (1929). Vet. Rec. 9, 319.Google Scholar
Moore, L. A., Hallman, E. T. & Sholl, L. B. (1938). Archs Path. 26, 820.Google Scholar
National Research Council (1966). Publs natn. Res. Coun., Wash. no. 1194, p. 4.Google Scholar
National Research Council (1968). Publs natn. Res. Coun., Wash. no. 1599, p. 10.Google Scholar
National Research Council (1972). Publs natn. Res. Coun., Wash. no. 2028, pp. 11, 71.Google Scholar
National Research Council (1973). Publs natn. Res. Coun., Wash. no. 2045, p. 8.Google Scholar
Schiffmann, E., Martin, G. R. & Corcoran, B. A. (1964). Archs Biochem. Biophys. 107, 284.CrossRefGoogle Scholar
Smith, B. S. W. & Field, A. C. (1963). Br. J. Nutr. 17, 591.CrossRefGoogle Scholar
Smith, R. H. (1959). Biochem.J. 71, 609.CrossRefGoogle Scholar
Stowe, H. D. (1969). J. Nutr. 98, 330.Google Scholar
Vaughan, J. M. (1970). The Physiology of Bone, ch. 8, p. 112. Oxford: Clarendon Press.Google Scholar
Vitale, J. J., Hellerstein, E. E., Nakamura, M. & Lown, B. (1961). Circulation Res. 9, 387.CrossRefGoogle Scholar
Walford, R. L., Carter, P. K. & Schneider, R. B. (1964). Archs Path. 78, 43.Google Scholar
Walser, M. (1967). Ergebn. Physiol. 59, 185.CrossRefGoogle Scholar
Walsh, J. J. (1974). Availability of magnesium to the equine. MSc Thesis, University of Kentucky, Lexington.Google Scholar
Walsh, J. J. & Harrington, D. D. (1973). J. Anim. Sci. 35, 206.Google Scholar
Woodward, D. L. & Reed, D. J. (1969). Am. J. Physiol. 217, 1477.Google Scholar
Yu, S. Y. & Blumenthal, H. T. (1963). J. Geront. 18, 119.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 320 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 25th February 2021. This data will be updated every 24 hours.

Access

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Influence of magnesium deficiency on horse foal tissue concentrations of Mg, calcium and phosphorus*
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Influence of magnesium deficiency on horse foal tissue concentrations of Mg, calcium and phosphorus*
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Influence of magnesium deficiency on horse foal tissue concentrations of Mg, calcium and phosphorus*
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *