Skip to main content Accessibility help
×
Home

Increased consumption of calcium from fat-free milk, energy-restricted diet and educational activities improves metabolic control in overweight type 2 diabetic patients

  • Jorge de Assis Costa (a1), Júnia Maria Geraldo Gomes (a1), Priscila Vaz de Melo Ribeiro (a2) and Rita de Cássia Gonçalves Alfenas (a2)

Abstract

We assessed the effects of increased Ca consumption from fat-free milk in an energy-restricted diet and educational activities in the metabolic control of overweight type 2 diabetes mellitus (T2DM) patients. Fourteen subjects with T2DM (BMI 29·4 (sd 4·5) kg/m2, low habitual Ca consumption (<600 mg/d)) were included in this randomised, crossover clinical trial. Subjects were randomly allocated to one of the two interventions: drink containing 700 mg of Ca (DAIR) or drink containing 0 mg of Ca (CONT) for ninety consecutive days each. Energy-restricted diets (–500 kcal/d; –2092 kJ/d), containing 800 mg of Ca from dietary sources/d, were prescribed for both groups. Questionnaires were applied at baseline and at the end of the study to assess the subjects’ knowledge on the disease and on self-care, biochemical variables and physical activity. Blood pressure, food intake, body composition and anthropometry were assessed at baseline, days 45 and 90. There was a higher reduction of body fat %, waist circumference, hip circumference, neck circumference, waist:hip ratio, sagittal abdominal diameter, diastolic/systolic blood pressure and an increase in fat-free mass % in DAIR than in CONT. Uric acid, fasting glucose, Hb1Ac, parathyroid hormone and alanine aminotransferase concentrations reduced and vitamin D concentration increased after 90 d in DAIR compared with CONT. The consumption of energy-restricted diet containing 1200 mg Ca/d seems to favour metabolic control in subjects with T2DM. The educational activities increased the knowledge on the disease care.

Copyright

Corresponding author

*Corresponding author: Priscila Vaz de Melo Ribeiro, fax +55 31 38992541, email priscilavazdemelo@yahoo.com.br

References

Hide All
1.American Diabetes Association (ADA) (2019) Standards of medical care in diabetes. Diabetes Care 42, Suppl. 1, S1S2.
2.American Diabetes Association (2016) Standards of medical care in diabetes. Diabetes Care 39, Suppl. 1, S1S2.
3.Reis, JP, von Muhlen, D, Miller, ER, et al. (2009) Vitamin D status and cardiometabolic risk factors in the United States adolescent population. Pediatrics 124, 371379.
4.Alvarez, TS & Zanella, MT (2009) Impacto de dois programas de educação nutricional sobre o risco cardiovascular em pacientes hipertensos e com excesso de peso (Impact of two nutrition education programs on cardiovascular risk in hypertensive and overweight patients). Rev Nutr 22, 7179.
5.Oliveira, JEP, Júnior, RMM & Vencio, S (2017) Diretrizes Sociedade Brasileira de Diabetes 2017–2018. São Paulo: Clannad.
6.Tremblay, A & Gilbert, J-A (2009) Milk products, insulin resistance syndrome and type 2 diabetes. J Am Coll Nutr 28, 91S102S.
7.Institute of Medicine (2011) Dietary Reference Intakes for Calcium and Vitamin D. Washington, DC: The National Academies Press.
8.Balk, EM, Adam, GP, Langberg, VN, et al. (2017) Global dietary calcium intake among adults: a systematic review. Osteoporos Int 28, 3315–3124.
9.Marques-Vidal, P, Gonçalves, A & Dias, CM (2006) Milk intake is inversely related to obesity in men and in young women: data from the Portuguese Health Interview Survey 1998–1999. Int J Obes 30, 8893.
10.Eilat-Adar, S, Xu, J, Loria, C, et al. (2007) Dietary calcium is associated with body mass index and body fat in American Indians. J Nutr 137, 19551960.
11.Thompson, WG, Holdman, NR, Janzow, DJ, et al. (2005) Effect of energy-reduced diets high in dairy products and fiber on weight loss in obese adults. Obes Res 13, 13441353.
12.Da Silva, FT, Torres, MRSG & Sanjuliani, AF (2013) Dietary calcium intake is associated with adiposity, metabolic profile, inflammatory state and blood pressure, but not with erythrocyte intracellular calcium and endothelial function in healthy pre-menopausal women. Br J Nutr 110, 10791088.
13.Jones, KW, Eller, LK, Parnell, JA, et al. (2013) Effect of a dairy- and calcium-rich diet on weight loss and appetite during energy restriction in overweight and obese adults: a randomized trial. Eur J Clin Nutr 67, 371376.
14.Pittas, AG, Lau, J, Hu, FB, et al. (2007) The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab 92, 20172029.
15.Alberti, KGMM, Eckel, RH, Grundy, SM, et al. (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International. Circulation 120, 16401645.
16.Stunkard, AJ & Messick, S (1985) The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J Psychosom Res 29, 7183.
17.Ribeiro, AB & Cardoso, MA (2002) Construção de um questionário de freqüência alimentar como subsídio para programas de prevenção de doenças crônicas não transmissíveis (Construction of a food frequency questionnaire as a subsidy for non-communicable chronic disease prevention programmes). Rev Nutr 15, 239245.
18.Cintra, IP, Von der Heyde, ED, Schmitz, BAS, et al. (1997) Métodos de inquéritos dietéticos (Dietary survey methods). Cad Nutr 13, 1123.
19.Monteiro, J & Chiarello, P (2007) Consumo alimentar. Visualizando porções (Food Consumption. Viewing Portions). Rio de Janeiro: Guanabara Koogan.
20.United States Department of Agriculture (2017) National nutrient database for standard reference Release 28 slightly revised May, 2016 Software v.3.7.1. The National Agricultural Library.
21.Food Studies and Research Center (NEPA) (2011) Tabela brasileira de composição dos alimentos – TACO (Brazilian Food Composition Table – TACO), 4th ed. Campinas: NEPA/UNICAMP.
22.Michels, MJ, César Coral, MH, Sakae, TM, et al. (2010) Questionário de Atividades de Autocuidado com o Diabetes: tradução, adaptação e avaliação das propriedades psicométricas (Questionnaire of Diabetes Self-Care Activities: translation, cross-cultural adaptation and evaluation of psychometric properties). Arq Bras Endocrinol Metab 54, 644651.
23.Torres, HC, Virginia, AH & Schall, VT (2005) Validação dos questionários de conhecimento (DKN-A) e atitude (ATT-19) de Diabetes Mellitus (Validation of Diabetes Mellitus Knowledge (DKN-A) and Attitude (ATT-19) Questionnaires). Rev Saude Publica 39, 906911.
24.Alfenas, RCG, Queiroz, VMV & Bittencourt, MCB (2000) Diabetes-dieta e receitas especiais. Viçosa: Universidade Federal de Vicosa.
25.Pardini, R, Matsudo, SM, Araújo, T, et al. (2001) Validation of the International Physical Activity Questionnaire (IPAQ version 6): pilot study in Brazilian young adults. Rev Bras Cien Mov 9, 4551.
26.Haskell, WL, Lee, IM, Pate, RR, et al. (2007) Physical activity and public health. Med Sci Sport Exerc 39, 14231434.
27.Jelliffe, DB (1968) Evaluacion del estado de nutricion de la comunidad: serie de monografias (Community Nutrition Assessment: Series of Monographs). Geneva: World Health Organization.
28.Wang, J, Thornton, JC, Bari, S, et al. (2003) Comparisons of waist circumferences measured at 4 sites. Am J Clin Nutr 77, 379384.
29.World Health Organization, Noncommunicable Diseases and Mental Health Cluster (2005) WHO STEPS surveillance manual: the WHO STEPwise approach to chronic disease risk factor surveillance/Noncommunicable Diseases and Mental Health, World Health Organization. World Health Organization. https://apps.who.int/iris/handle/10665/43376
30.Ben-Noun, LL & Laor, A (2003) Relationship of neck circumference to cardiovascular risk factors. Obes Res 11, 226231.
31.Richelsen, B & Pedersen, SB (1995) Associations between different anthropometric measurements of fatness and metabolic risk parameters in non-obese, healthy, middle-aged men. Int J Obes Relat Metab Disord 19, 169174.
32.Sociedade Brasileira de Cardiologia/Sociedade Brasileira de Hipertensão/Sociedade Brasileira de Nefrologia (Brazilian Society of Cardiology/Brazilian Society of Hypertension/Brazilian Society of Nephrology) (2010) VI Diretrizes Brasileiras de Hipertensão (VI Brazilian Guidelines on Hypertension). Arq Bras Cardiol 95, 151.
33.Pottgen, PDE (1976) Why measure total serum Ca? Clin Chem 22, 17521753.
34.Matthews, DR, Hosker, JP, Rudenski, AS, et al. (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28, 412419.
35.Geloneze, B & Tambascia, MA (2006) Avaliação da resistência à insulina (Evaluation of insulin resistance). Arq Bras Endocrinol Metab 50, 208215.
36.Mera, R, Thompson, H & Prasad, C (1998) How to calculate sample size for an experiment: a case-based description. Nutr Neurosci 1, 8791.
37.Heaney, RP (2006) Calcium intake and disease prevention. Arq Bras Endocrinol Metabol 50, 8593.
38.Torres, MRSG, Francischetti, EA, Genelhu, V, et al. (2010) Effect of a high-calcium energy-reduced diet on abdominal obesity and cardiometabolic risk factors in obese Brazilian subjects. Int J Clin Pract 64, 10761083.
39.Crispim, SP, Ribeiro, RCL, Panato, E, et al. (2009) Validade relativa de um questionário de freqüência alimentar para utilização em adultos (Relative validity of a food frequency questionnaire for use in adults). Rev Nutr 22, 8195.
40.Zemel, MB, Shi, H, Greer, B, et al. (2000) Regulation of adiposity by dietary calcium. FASEB J 14, 11321138.
41.Tylavsky, FA, Cowan, PA, Terrell, S, et al. (2010) Calcium intake and body composition in African-American children and adolescents at risk for overweight and obesity. Nutrients 2, 950964.
42.Savi, CB, de Salles, RK, Zeni, LAZR, et al. (2000) Dietas hipocalóricas em internação: perda de peso em seis dias (Inpatient hypocaloric diets: weight loss in six days). Arq Bras Endocrinol Metabol 44, 497501.
43.Triffoni-Melo, AT, Suen, VMM, Resende, CMM, et al. (2015) Resting energy expenditure adaptation after short-term caloric restriction in morbidly obese women. Rev Nutr 28, 505511.
44.Jacobsen, R, Lorenzen, JK, Toubro, S, et al. (2005) Effect of short-term high dietary calcium intake on 24-h energy expenditure, fat oxidation, and fecal fat excretion. Int J Obes 29, 292301.
45.Du, H, Van Der, ADL, Boshuizen, HC, et al. (2010) Dietary fiber and subsequent changes in body weight and waist circumference in European men and women dietary fiber and subsequent changes in body weight and waist circumference in European men and women. Am J Clin Nutr 91, 329336.
46.Torres, MRSG & Sanjuliani, AF (2013) Effects of weight loss from a high-calcium energy-reduced diet on biomarkers of inflammatory stress, fibrinolysis, and endothelial function in obese subjects. Nutrition 29, 143151.
47.Holick, MF, Binkley, NC, Bischoff-Ferrari, HA, et al. (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96, 19111930.
48.Mathieu, C & Badenhoop, K (2005) Vitamin D and type 1 diabetes mellitus: state of the art. Trends Endocrinol Metab 16, 6166.
49.Loya-López, GM, Godínez-Gutiérrez, SA, Chiquete, E, et al. (2011) Niveles de vitamina D en pacientes con sobrepeso y obesidad y su asociación con resistencia a la insulina (Vitamin D levels in overweight and obese patients and their association with insulin resistance). Rev Endocrinol y Nutr 19, 140145.
50.Prospective Diabetes Study Group (1998) Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352, 837853.
51.The Diabetes Control and Complications Trial Research Group (1996) The absence of a glycemic threshold for the development of long-term complications: the perspective of the diabetes control and complications trial. Diabetes 45, 12891298.
52.Nikooyeh, B, Neyestani, TR, Farvid, M, et al. (2011) Daily consumption of vitamin D– or vitamin D+ calcium–fortified yogurt drink improved glycemic control in patients with type 2 diabetes: a randomized clinical trial. Am J Clin Nutr 93, 764771.
53.Barbosa, MCC, Brandão, AA, Pozzan, R, et al. (2011) Association between uric acid and cardiovascular risk variables in a non-hospitalized population. Arq Bras Cardiol 96, 212218.
54.Schuch, NJ, Garcia, VC & Martini, LA (2009) Vitamina D e doenças endocrinometabólicas (Vitamin D and endocrinometabolic diseases). Arq Bras Endocrinol Metabol 53, 625633.
55.Stancliffe, RA, Thorpe, T & Zemel, MB (2011) Dairy attenuates oxidative and inflammatory stress in metabolic syndrome. Am J Clin Nutr 94, 422430.
56.Pinheiro, GRC (2008) Revendo a orientação dietética na gota (Reviewing dietary guidance in gout). Rev Bras Reumatol 48, 157161.
57.Choi, HK & Ford, ES (2007) Prevalence of the metabolic syndrome in individuals with hyperuricemia. Am J Med 120, 442447.
58.Desai, MY, Santos, RD, Dalal, D, et al. (2005) Relation of serum uric acid with metabolic risk factors in asymptomatic middle-aged Brazilian men. Am J Cardiol 95, 865868.
59.Penido, MGMG, Diniz, JSS, Guimarães, MMM, et al. (2002) Urinary excretion of calcium, uric acid and citrate in healthy children and adolescents. J Pediatr 78, 153160.
60.Whelton, PK, He, J, Appel, LJ, et al. (2002) Primary prevention of hypertension: clinical and public health advisory from The National High Blood Pressure Education Program. JAMA 288, 18821888.
61.Adler, AI, Stratton, IM, Neil, HA, et al. (2000) Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ 321, 412419.
62.Lira, ARF, Oliveira, FLC, Escrivão, MAMS, et al. (2010) Hepatic steatosis in a school population of overweight and obese adolescents. J Pediatr 86, 4552.
63.Kemi, VE, Kärkkäinen, MUM, Rita, HJ, et al. (2010) Low calcium:phosphorus ratio in habitual diets affects serum parathyroid hormone concentration and calcium metabolism in healthy women with adequate calcium intake. Br J Nutr 103, 561568.

Keywords

Increased consumption of calcium from fat-free milk, energy-restricted diet and educational activities improves metabolic control in overweight type 2 diabetic patients

  • Jorge de Assis Costa (a1), Júnia Maria Geraldo Gomes (a1), Priscila Vaz de Melo Ribeiro (a2) and Rita de Cássia Gonçalves Alfenas (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed