Skip to main content Accessibility help
×
Home

Improved bone status by the β-blocker propranolol in an animal model of nutritional growth retardation

  • Christian E. Lezón (a1), María I. Olivera (a1), Clarisa Bozzini (a1), Patricia Mandalunis (a2), Rosa M. Alippi (a1) and Patricia M. Boyer (a1)...

Abstract

The aim of the present research was to study if the β-blocker propranolol, which is known to increase bone mass, could reverse the adverse skeletal effects of mild chronic food restriction in weanling rats. Male Wistar rats were divided into four groups: control, control+propranolol (CP), nutritional growth retardation (NGR) and nutritional growth retardation+propranolol (NGRP). Control and CP rats were fed freely with the standard diet. NGR and NGRP rats received, for 4 weeks, 80 % of the amount of food consumed by the control and CP rats, respectively. Results were expressed as mean values and sem. Food restriction induced detrimental effects on body and femur weight and length (P < 0·05) and bone structural and geometrical properties (P < 0·001), confirming results previously shown in our laboratory. However, the β-blocker overcame the deleterious effect of nutritional stress on load-bearing capacity, yielding load, bone stiffness, cross-sectional cortical bone area and second moment of inertia of the cross-section in relation to the horizontal axis without affecting anthropometric, histomorphometric and bone morphometric parameters. The results suggest that propranolol administration to mildly chronically undernourished rats markedly attenuates the impaired bone status in this animal model of growth retardation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Improved bone status by the β-blocker propranolol in an animal model of nutritional growth retardation
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Improved bone status by the β-blocker propranolol in an animal model of nutritional growth retardation
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Improved bone status by the β-blocker propranolol in an animal model of nutritional growth retardation
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Patricia Monica Boyer, fax +54 11 4508 3958, email pboyer@fisio.odon.uba.ar

References

Hide All
1Hill, PA & Orth, M (1998) Bone remodeling. BJO 25, 101107.
2Amling, M, Takeda, S & Karsenty, G (2000) A neuro (endo)crine regulation of bone remodeling. BioEssays 22, 970975.
3Takeda, S & Karsenty, G (2001) Central control of bone formation. J Bone Miner Metab 19, 195198.
4Takeda, S (2008) Central control of bone remodelling. J Neuroendocrinol 20, 802807.
5Elefteriou, F (2008) Regulation of bone remodeling by the central and peripheral nervous system. Arch Biochem Biophys 15, 231236.
6Turner, CH & Burr, DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14, 595608.
7Ferretti, JL (1997) Biomechanical properties of bone. In Osteoporosis and Bone Densitometry, pp. 143161 [Gennant, HK, Guglielmi, G and Jergas, M, editors]. Berlin: Springer Verlag.
8Togari, A, Arai, M, Mizutani, S, et al. (1997) Expression of mRNAs for neuropeptide receptors and β-adrenergic receptors in human osteoblasts and human osteogenic sarcoma cells. Neurosci Lett 233, 125128.
9Togari, A (2002) Adrenergic regulation of bone metabolism: possible involvement of sympathetic innervation of osteoblastic and osteoclastic cells. Microsc Res Tech 58, 7784.
10Takeda, S, Elefteriou, F, Levasseur, R, et al. (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111, 305317.
11Minkowitz, B, Boskey, AL, Lane, JM, et al. (1991) Effects of propranolol on bone metabolism in the rat. J Orthop Res 9, 869875.
12Bonjour, JP, Ammann, P, Chevalley, T, et al. (2001) Protein intake and bone growth. Can J Appl Physiol 26, 153166.
13Boyer, PM, Compagnucci, GE, Olivera, MI, et al. (2005) Bone status in an animal model of chronic sub-optimal nutrition: a morphometric, densitometric and mechanical study. Br J Nutr 93, 663669.
14Kaplan, RM & Toshima, MT (1992) Does a reduced fat diet cause retardation in child growth? Prev Med 21, 3352.
15Akeson, PK, Axelsson, IEM, Raiha, NCR, et al. (2000) Fat intake and metabolism in Swedish and Italian infants. Acta Paediatr 89, 2833.
16Lifshitz, F & Moses, N (1989) Growth failure: a complication of dietary treatment of hypercholesterolemia. Am J Dis Child 143, 537542.
17Friedman, SM, Rodriguez, PN, Olivera, MI, et al. (1998) Enanismo por desnutrición: cronodinamia de los procesos metabólicos en ratas (Nutritional dwarfing: longitudinal analysis of anthropometric and metabolic parameters in rats). Medicina (B Aires) 58, 282286.
18Parfitt, AM, Drezner, MK, Glorieux, FH, et al. (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2, 595610.
19Sokal, R & Rohlf, J (1994) Biometry: The Principles and Practice of Statistics in Biological Research. San Francisco: WH Freeman & Co.
20Pugliese, MT, Weyman-Daum, M, Moses, N, et al. (1987) Parental health beliefs as a cause of nonorganic failure to thrive. Pediatrics 80, 175182.
21Lifshitz, F & Moses, N (1988) Nutritional dwarfing: growth, dieting and fear of obesity. J Am Coll Nutr 7, 367376.
22Keller, W & Fillmore, CM (1983) Prevalence of protein–energy malnutrition. World Health Stat Q 36, 129167.
23Boyce, BF & Xing, L (2007) Review. Biology of RANK, RANKL, and osteoprotegerin. Arthritis Res Ther 9, Suppl. 1, S1.
24Takeda, S, Elefteriou, F, Levasseur, R, et al. (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111, 305317.
25Elefteriou, F, Ahn, JD, Takeda, S, et al. (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434, 514520.
26Bonnet, N, Pierroz, DD & Ferrari, SL (2008) Adrenergic control of bone remodeling and its implications for the treatment of osteoporosis. J Musculoskelet Neuronal Interact 8, 94104.
27Bonnet, N, Laroche, N, Vico, L, et al. (2006) Dose effects of propranolol on cancellous and cortical bone in ovariectomized adult rats. J Pharmacol Exp Ther 318, 11181127.
28Scott, CK & Hightower, JA (1991) The matrix of endochondral bone differs from the matrix of intramembranous bone. Calcif Tissue Int 49, 349354.

Keywords

Improved bone status by the β-blocker propranolol in an animal model of nutritional growth retardation

  • Christian E. Lezón (a1), María I. Olivera (a1), Clarisa Bozzini (a1), Patricia Mandalunis (a2), Rosa M. Alippi (a1) and Patricia M. Boyer (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed