Skip to main content Accessibility help
×
Home

The importance of blood lipids in the association between BMI and blood pressure among Chinese overweight and obese children

  • Zhi-yong Zou (a1), Yi-de Yang (a1), Shuo Wang (a1), Bin Dong (a1) (a2), Xiao-hui Li (a1) and Jun Ma (a1)...

Abstract

We aimed to examine the contribution of blood lipids to the association between BMI and blood pressure (BP) in children with overweight and obesity. Data were collected in elementary and high schools of Chaoyang District, Beijing, China in 2012. Participants’ weight, height, BP and fasting plasma lipid profile were measured by standard protocols. Mediation analysis was used to examine the mediation role of blood lipids on the relation between BMI and BP, with age included as a covariate. We found that in boys 8·29 % (mediation effect=0·106, P=0·012) of the association between BMI and systolic BP was mediated through TAG. TAG mediated 12·53 % (mediation effect=0·093, P=0·018) and LDL-cholesterol mediated 7·75 % (mediation effect=0·57, P=0·046) of the association between BMI and diastolic BP was mediated by TAG and LDL-cholesterol, respectively. However, blood lipids did not show the mediation effect in girls. Our findings suggested that there was a sex difference in the contribution of blood lipids to the association between BMI and BP. Controlling TAG or LDL-cholesterol may be beneficial for reducing the risk of the BMI-related high BP in overweight boys; however, this outcome is not the case when controlling TAG or LDL-cholesterol in girls. This study may provide clues to explore the underlying mechanism of the association between obesity and hypertension.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The importance of blood lipids in the association between BMI and blood pressure among Chinese overweight and obese children
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The importance of blood lipids in the association between BMI and blood pressure among Chinese overweight and obese children
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The importance of blood lipids in the association between BMI and blood pressure among Chinese overweight and obese children
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Professor J. Ma, fax +86 10 82801178, email majunt@bjmu

Footnotes

Hide All

These authors contributed equally to this work.

Footnotes

References

Hide All
1. Ma, J, Wang, Z, Dong, B, et al. (2012) Quantifying the relationships of blood pressure with weight, height and body mass index in Chinese children and adolescents. J Paediatr Child Health 48, 413418.
2. Zhou, Z, Hu, D & Chen, J (2009) Association between obesity indices and blood pressure or hypertension: which index is the best? Public Health Nutr 12, 10611071.
3. Savva, SC, Tornaritis, M, Savva, ME, et al. (2000) Waist circumference and waist-to-height ratio are better predictors of cardiovascular disease risk factors in children than body mass index. Int J Obes Relat Metab Disord 24, 14531458.
4. Janssen, I, Katzmarzyk, PT & Ross, R (2004) Waist circumference and not body mass index explains obesity-related health risk. Am J Clin Nutr 79, 379384.
5. Hvidt, KN, Olsen, MH, Ibsen, H, et al. (2014) Effect of changes in BMI and waist circumference on ambulatory blood pressure in obese children and adolescents. J Hypertens 32, 14701477 discussion 1477.
6. Swinburn, BA, Sacks, G, Hall, KD, et al. (2011) The global obesity pandemic: shaped by global drivers and local environments. Lancet 378, 804814.
7. Ibrahim, MM & Damasceno, A (2012) Hypertension in developing countries. Lancet 380, 611619.
8. Chockalingam, A, Campbell, NR & Fodor, JG (2006) Worldwide epidemic of hypertension. Can J Cardiol 22, 553555.
9. Ma, J, Cai, CH, Wang, HJ, et al. (2012) The trend analysis of overweight and obesity in Chinese students during 1985–2010. Zhonghua Yu Fang Yi Xue Za Zhi 46, 776780.
10. Dong, B, Wang, HJ, Wang, Z, et al. (2013) Trends in blood pressure and body mass index among Chinese children and adolescents from 2005 to 2010. Am J Hypertens 26, 9971004.
11. Rahmouni, K (2014) Obesity-associated hypertension: recent progress in deciphering the pathogenesis. Hypertension 64, 215221.
12. Masquio, DC, de Piano, A, Campos, RM, et al. (2014) Saturated fatty acid intake can influence increase in plasminogen activator inhibitor-1 in obese adolescents. Horm Metab Res 46, 245251.
13. Masquio, DC, de Piano, A, Campos, RM, et al. (2015) Reduction in saturated fat intake improves cardiovascular risks in obese adolescents during interdisciplinary therapy. Int J Clin Pract 69, 560570.
14. Selby, JV, Newman, B, Quiroga, J, et al. (1991) Concordance for dyslipidemic hypertension in male twins. JAMA 265, 20792084.
15. Halperin, RO, Sesso, HD, Ma, J, et al. (2006) Dyslipidemia and the risk of incident hypertension in men. Hypertension 47, 4550.
16. Guo, ZR, Hu, XS, Wu, M, et al. (2009) A prospective study on the association between dyslipidemia and hypertension. Zhonghua Liu Xing Bing Xue Za Zhi 30, 554558.
17. Nickenig, G (2002) Central role of the AT(1)-receptor in atherosclerosis. J Hum Hypertens 16, Suppl. 3, S26S33.
18. Nickenig, G & Harrison, DG (2002) The AT(1)-type angiotensin receptor in oxidative stress and atherogenesis: part I: oxidative stress and atherogenesis. Circulation 105, 393396.
19. Dong, B, Wang, HJ, Wang, Z, et al. (2013) Trends in blood pressure and body mass index among Chinese children and adolescents from 2005 to 2010. Am J Hypertens 26, 9971004.
20. Rao, G, Powell-Wiley, TM, Ancheta, I, et al. (2015) Identification of obesity and cardiovascular risk in ethnically and racially diverse populations: a scientific statement from the American Heart Association. Circulation 132, 457472.
21. Ji, CY (2005) Report on childhood obesity in China (1) – body mass index reference for screening overweight and obesity in Chinese school-age children. Biomed Environ Sci 18, 390400.
22. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents (2004) The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics 114, Suppl 4th Report, 555576.
23. Baron, RM & Kenny, DA (1986) The moderator-mediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol 51, 11731182.
24. Sobel, ME (1982) Asymptotic confidence intervals for indirect effects in structural equation models. Sociol Methodol 13, 290312.
25. Preacher, KJ & Hayes, AF (2004) SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav Res Methods Instrum Comput 36, 717731.
26. Ma, J, Wang, Z, Dong, B, et al. (2012) Quantifying the relationships of blood pressure with weight, height and body mass index in Chinese children and adolescents. J Paediatr Child Health 48, 413418.
27. Correia-Costa, L, Santos, AC, Severo, M, et al. (2015) Sex-specific mediating role of insulin resistance and inflammation in the effect of adiposity on blood pressure of prepubertal children. PLOS ONE 10, e132097.
28. Hunt, SC, Stephenson, SH, Hopkins, PN, et al. (1991) Predictors of an increased risk of future hypertension in Utah. A screening analysis. Hypertension 17, Pt 2, 969976.
29. Haffner, SM, Miettinen, H, Gaskill, SP, et al. (1996) Metabolic precursors of hypertension. The San Antonio Heart Study. Arch Intern Med 156, 19942001.
30. Tikkanen, MJ & Nikkila, EA (1987) Regulation of hepatic lipase and serum lipoproteins by sex steroids. Am Heart J 113, Pt 2, 562567.
31. Skinner, AC, Perrin, EM, Moss, LA, et al. (2015) Cardiometabolic risks and severity of obesity in children and young adults. N Engl J Med 373, 13071317.
32. Wong, ND, Lopez, V, Tang, S, et al. (2006) Prevalence, treatment, and control of combined hypertension and hypercholesterolemia in the United States. Am J Cardiol 98, 204208.
33. Anderson, KM, Castelli, WP & Levy, D (1987) Cholesterol and mortality. 30 years of follow-up from the Framingham study. JAMA 257, 21762180.
34. Nickenig, G & Harrison, DG (2002) The AT(1)-type angiotensin receptor in oxidative stress and atherogenesis: part II: AT(1) receptor regulation. Circulation 105, 530536.
35. Nohria, A, Garrett, L, Johnson, W, et al. (2003) Endothelin-1 and vascular tone in subjects with atherogenic risk factors. Hypertension 42, 4348.
36. DeMarco, VG, Aroor, AR & Sowers, JR (2014) The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol 10, 364376.

Keywords

Type Description Title
WORD
Supplementary materials

Zou supplementary material
Tables S1-S2

 Word (329 KB)
329 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed