Skip to main content Accessibility help
×
Home

Impact of nutrition on the ageing process

  • John C. Mathers (a1)

Abstract

Human life expectancy has been increasing steadily for almost two centuries and is now approximately double what it was at the beginning of the Victorian era. This remarkable demographic change has been accompanied by a shift in disease prevalence so that age is now the major determinant of most common diseases. The challenge is to enhance healthy ageing and to reduce the financial and social burdens associated with chronic ill health in later life. Studies in model organisms have demonstrated that the ageing phenotype arises because of the accumulation of macromolecular damage within the cell and that the ageing process is plastic. Nutritional interventions that reduce such damage, or which enhance the organism's capacity to repair damage, lead to greater longevity and to reduced risk of age-related diseases. Dietary (energy) restriction increases lifespan in several model organisms, but it is uncertain whether it is effective in primates, including humans. However, excess energy storage leading to increased adiposity is a risk factor for premature mortality and for age-related diseases so that obesity prevention is likely to be a major public health route to healthy ageing. In addition, adherence to healthy eating patterns, such as the Mediterranean dietary pattern, is associated with longevity and reduced risk of age-related diseases.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Impact of nutrition on the ageing process
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Impact of nutrition on the ageing process
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Impact of nutrition on the ageing process
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: J. C. Mathers, email john.mathers@ncl.ac.uk

References

Hide All
1 Kirkwood, TB (2008) A systematic look at an old problem. Nature 451, 644647.
2 Mackenbach, JP, Karanikolos, M & McKee, M (2013) The unequal health of Europeans: successes and failures of policies. Lancet 381, 11251134.
3 Index Mundi (2013) http://www.indexmundi.com/g/r.aspx?t = 0&v = 30 (accessed accessed 21 October 2013).
4 Marmot, M (2010) Fair Society, Health Lives. Strategic Review of Health Inequalities in England post-2010. London: The Marmot Review, University College London.
5 Rae, MJ, Butler, RN, Campisi, J, et al. (2010) The demographic and biomedical case for late-life interventions in aging. Sci Transl Med 2, 40cm21.
6 DePinho, RA (2000) The age of cancer. Nature 408, 248254.
7 Feigin, VL, Lawes, CM, Bennett, DA, et al. (2003) Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2, 4353.
8 Hebert, LE, Weuve, J, Scherr, PA, et al. (2013) Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology 80, 17781783.
9 Kirkwood, TB (2005) Understanding the odd science of aging. Cell 120, 437447.
10 Greaves, LC, Barron, MJ, Plusa, S, et al. (2010) Defects in multiple complexes of the respiratory chain are present in ageing human colonic crypts. Exp Gerontol 45, 573579.
11 Greaves, LC, Elson, JL, Nooteboom, M, et al. (2012) Comparison of mitochondrial mutation spectra in ageing human colonic epithelium and disease: absence of evidence for purifying selection in somatic mitochondrial DNA point mutations. PLoS Genet 8, e1003082.
12 Lopez-Otin, C, Blasco, MA, Partridge, L, et al. (2013) The hallmarks of aging. Cell 153, 11941217.
13 Toyama, BH & Hetzer, MW (2013) Protein homeostasis: live long, won't prosper. Nat Rev Mol Cell Biol 14, 5561.
14 Pamplona, R (2008) Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity. Biochim Biophys Acta 1777, 12491262.
15 Liu, L & Rando, TA (2011) Manifestations and mechanisms of stem cell aging. J Cell Biol 193, 257266.
16 Ungvari, Z, Csiszar, A, Sosnowska, D, et al. (2013) Testing predictions of the oxidative stress hypothesis of aging using a novel invertebrate model of longevity: the giant clam (Tridacna derasa). J Gerontol A Biol Sci Med Sci 68, 359367.
17 Kenyon, CJ (2010) The genetics of ageing. Nature 464, 504512.
18 Bishop, NA, Lu, T & Yankner, BA (2010) Neural mechanisms of ageing and cognitive decline. Nature 464, 529535.
19 Harrison, DE, Strong, R, Sharp, ZD, et al. (2009) Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460, 392395.
20 Nakagawa, S, Lagisz, M, Hector, KL, et al. (2012) Comparative and meta-analytic insights into life extension via dietary restriction. Aging Cell 11, 401409.
21 Simons, MJ, Koch, W & Verhulst, S (2013) Dietary restriction of rodents decreases aging rate without affecting initial mortality rate – a meta-analysis. Aging Cell 12, 410414.
22 Liao, CY, Rikke, BA, Johnson, TE, et al. (2010) Genetic variation in the murine lifespan response to dietary restriction: from life extension to life shortening. Aging Cell 9, 9295.
23 Colman, RJ, Anderson, RM, Johnson, SC, et al. (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325, 201204.
24 Mattison, JA, Roth, GS, Beasley, TM, et al. (2012) Impact of caloric restriction on health and survival in rhesus monkeys from the NIA study. Nature 489, 318321.
25 Austad, SN (2012) Ageing: mixed results for dieting monkeys. Nature 489, 210211.
26 Prospective Studies Collaboration (2009) Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet 273, 10831096.
27 Sun, Q, Townsend, MK, Okereke, OI, et al. (2009) Adiposity and weight change in mid-life in relation to healthy survival after age 70 in women: prospective cohort study. BMJ 339, b3796.
28 Ho, AJ, Stein, JL, Hua, X, et al. (2010) A commonly carried allele of the obesity-related FTO gene is associated with reduced brain volume in the healthy elderly. Proc Natl Acad Sci U S A 107, 84048409.
29 Anstey, KJ, Cherbuin, N, Budge, M, et al. (2011) Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obes Rev 12, e426e437.
30 Handschin, C & Spiegelman, BM (2008) The role of exercise and PGC1α in inflammation and chronic disease. Nature 454, 463469.
31 Craigie, AM, Lake, AA, Kelly, SA, et al. (2011) Tracking of obesity-related behaviours from childhood to adulthood: a systematic review. Maturitas 70, 266284.
32 Langie, SA, Lara, J & Mathers, JC (2012) Early determinants of the ageing trajectory. Best Pract Res Clin Endocrinol Metab 26, 613626.
33 Langie, SA, Achterfeldt, S, Gorniak, JP, et al. (2013) Maternal folate depletion and high-fat feeding from weaning affects DNA methylation and DNA repair in brain of adult offspring. FASEB J 27, 33233334.
34 Tyson, J, Caple, F, Spiers, A, et al. (2009) Inter-individual variation in nucleotide excision repair in young adults: effects of age, adiposity, micronutrient supplementation and genotype. Br J Nutr 101, 13161323.
35 Tyson, J & Mathers, JC (2007) Dietary and genetic modulation of DNA repair in healthy human adults. Proc Nutr Soc 66, 4251.
36 Caple, F, Williams, EA, Spiers, A, et al. (2010) Inter-individual variation in DNA damage and base excision repair in young, healthy non-smokers: effects of dietary supplementation and genotype. Br J Nutr 103, 15851593.
37 Fave, G, Beckmann, ME, Draper, JH, et al. (2009) Measurement of dietary exposure: a challenging problem which may be overcome thanks to metabolomics? Genes Nutr 4, 135141.
38 Penn, L, Boeing, H, Boushey, CJ, et al. (2010) Assessment of dietary intake: NuGO symposium report. Genes Nutr 5, 205213.
39 Trichopoulou, A, Orfanos, P, Norat, T, et al. (2005) Modified Mediterranean diet and survival: EPIC-elderly prospective cohort study. BMJ 330, 991.
40 Sofi, F, Abbate, R, Gensini, GF, et al. (2010) Accruing evidence on benefits of adherence to the Mediterranean diet on health: an updated systematic review and meta-analysis. Am J Clin Nutr 92, 11891196.
41 Estruch, R, Ros, E, Salas-Salvado, J, et al. (2013) Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 368, 12791290.
42 Mathers, JC (2013) Nutrition and ageing: knowledge, gaps and research priorities. Proc Nutr Soc 72, 246250.
43 Franco, OH, Karnik, K, Osborne, G, et al. (2009) Changing course in ageing research: the Healthy Ageing Phenotype. Maturitas 63, 1319.
44 Lara, J, Godfrey, A, Evans, E, et al. (2013) Towards measurement of the Healthy Ageing Phenotype in lifestyle-based intervention studies. Maturitas 76, 189199.

Keywords

Impact of nutrition on the ageing process

  • John C. Mathers (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed