Skip to main content Accessibility help
×
Home

How can food extracts consumed in the Mediterranean and East Asia suppress prostate cancer proliferation?

  • Mu Yao (a1), Chanlu Xie (a1), Maryrose Constantine (a1), Sheng Hua (a1), Brett D. Hambly (a2), Greg Jardine (a3), Paul Sved (a4) and Qihan Dong (a1) (a4) (a5)...

Abstract

We have developed a blend of food extracts commonly consumed in the Mediterranean and East Asia, named blueberry punch (BBP), with the ultimate aim to formulate a chemoprevention strategy to inhibit prostate cancer progression in men on active surveillance protocol. We demonstrated previously that BBP inhibited prostate cancer cell proliferation in vitro and in vivo. The purpose of this study was to determine the molecular mechanism responsible for the suppression of prostate cancer cell proliferation by BBP. Treatment of lymph node-metastasised prostate cancer cells (LNCaP) and bone-metastasised prostate cancer cells (PC-3 and MDA-PCa-2b) with BBP (up to 0·8 %) for 72 h increased the percentage of cells at the G0/G1 phase and decreased those at the S and G2/M phases. The finding was supported by the reduction in the percentage of Ki-67-positive cells and of DNA synthesis measured by the incorporation of 5-ethynyl-2′-deoxyuridine. Concomitantly, BBP treatment decreased the protein levels of phosphorylated retinoblastoma, cyclin D1 and E, cyclin-dependent kinase (CDK) 4 and 2, and pre-replication complex (CDC6 and MCM7) in LNCaP and PC-3 cells, whereas CDK inhibitor p27 was elevated in these cell lines. In conclusion, BBP exerts its anti-proliferative effect on prostate cancer cells by modulating the expression and phosphorylation of multiple regulatory proteins essential for cell proliferation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      How can food extracts consumed in the Mediterranean and East Asia suppress prostate cancer proliferation?
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      How can food extracts consumed in the Mediterranean and East Asia suppress prostate cancer proliferation?
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      How can food extracts consumed in the Mediterranean and East Asia suppress prostate cancer proliferation?
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Q. Dong, fax +61 2 95161273, email qihan.dong@sydney.edu.au

References

Hide All
1Dall'Era, MA, Konety, BR, Cowan, JE, et al. (2008) Active surveillance for the management of prostate cancer in a contemporary cohort. Cancer 112, 26642670.
2Itsiopoulos, C, Hodge, A & Kaimakamis, M (2009) Can the Mediterranean diet prevent prostate cancer? Mol Nutr Food Res 53, 227239.
3Ruijter, E, van de Kaa, C, Miller, G, et al. (1999) Molecular genetics and epidemiology of prostate carcinoma. Endocr Rev 20, 2245.
4Kouris-Blazos, A, Wahlqvist, ML, Trichopoulou, A, et al. (1996) Health and nutritional status of elderly Greek migrants to Melbourne, Australia. Age Ageing 25, 177189.
5Nelson, WG, De Marzo, AM, DeWeese, TL, et al. (2004) The role of inflammation in the pathogenesis of prostate cancer. J Urol 172, S6S11, (discussion S-2).
6Singh, J, Xie, C, Yao, M, et al. (2010) Food extracts consumed in Mediterranean countries and East Asia reduce protein concentrations of androgen receptor, phospho-protein kinase B, and phospho-cytosolic phospholipase A(2)alpha in human prostate cancer cells. J Nutr 140, 786791.
7Hara, T, Nakamura, K, Araki, H, et al. (2003) Enhanced androgen receptor signaling correlates with the androgen-refractory growth in a newly established MDA PCa 2b-hr human prostate cancer cell subline. Cancer Res 63, 56225628.
8Pileri, SA, Roncador, G, Ceccarelli, C, et al. (1997) Antigen retrieval techniques in immunohistochemistry: comparison of different methods. J Pathol 183, 116123.
9Chen, PL, Scully, P, Shew, JY, et al. (1989) Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 58, 11931198.
10van Bokhoven, A, Varella-Garcia, M, Korch, C, et al. (2003) Molecular characterization of human prostate carcinoma cell lines. Prostate 57, 205225.
11Gonzalez, MA, Tachibana, KE, Laskey, RA, et al. (2005) Control of DNA replication and its potential clinical exploitation. Nat Rev Cancer 5, 135141.
12Williams, GH & Stoeber, K (2007) Cell cycle markers in clinical oncology. Curr Opin Cell Biol 19, 672679.
13Braden, WA, McClendon, AK & Knudsen, ES (2008) Cyclin-dependent kinase 4/6 activity is a critical determinant of pre-replication complex assembly. Oncogene 27, 70837093.
14Malumbres, M & Barbacid, M (2001) To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1, 222231.
15Bell, SP, Dutta, A, Bell, SP, et al. (2002) DNA replication in eukaryotic cells. Annu Rev Biochem 71, 333374.
16Blow, JJ, Hodgson, B, Blow, JJ, et al. (2002) Replication licensing–defining the proliferative state? Trends Cell Biol 12, 7278.
17Stoeber, K, Tlsty, TD, Happerfield, L, et al. (2001) DNA replication licensing and human cell proliferation. J Cell Sci 114, 20272041.
18Scholzen, T & Gerdes, J (2000) The Ki-67 protein: from the known and the unknown. J Cell Physiol 182, 311322.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed