Skip to main content Accessibility help
×
Home

High serum carotenoids associated with lower risk for the metabolic syndrome and its components among Japanese subjects: Mikkabi cohort study

  • Minoru Sugiura (a1), Mieko Nakamura (a2), Kazunori Ogawa (a1), Yoshinori Ikoma (a1) and Masamichi Yano (a1)...

Abstract

Recent epidemiological studies show the association of carotenoids with the metabolic syndrome (MetS), but thorough longitudinal cohort studies regarding this association have not been well conducted. The objective of this study was to investigate longitudinally whether serum carotenoids are associated with the risk of developing the MetS and its components in Japanese subjects. We conducted a follow-up study on 1073 men and women aged 30–79 years at the baseline from the Mikkabi prospective cohort study. Those who participated in the baseline and completed follow-up surveys were examined longitudinally. Over the 10-year period, 910 subjects (295 men and 615 women) took part in the follow-up survey at least once. Over a mean follow-up period of 7·8 (sd 2·9) years, thirty-six men and thirty-one women developed new MetS. After adjustments for confounders, the hazard ratio (HR) for the MetS in the highest tertile of serum β-carotene against the lowest tertile was 0·47 (95 % CI 0·23, 0·95). On the other hand, significantly lower risks for dyslipidaemia were observed in the highest tertiles of serum α- and β-carotene and β-cryptoxanthin (HR 0·66; 95 % CI 0·46, 0·96; HR, 0·54; 95 % CI 0·37, 0·79; and HR 0·66; 95 % CI 0·44, 0·99, respectively). Other significant associations between the risks for obesity, high blood pressure and hyperglycaemia with serum carotenoids were not observed. Our results further support the hypothesis that eating a diet rich in carotenoids might help prevent the development of the MetS and its complications in Japanese subjects.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      High serum carotenoids associated with lower risk for the metabolic syndrome and its components among Japanese subjects: Mikkabi cohort study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      High serum carotenoids associated with lower risk for the metabolic syndrome and its components among Japanese subjects: Mikkabi cohort study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      High serum carotenoids associated with lower risk for the metabolic syndrome and its components among Japanese subjects: Mikkabi cohort study
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: M. Sugiura, fax +81 54 369 2115, email msugiura@affrc.go.jp

References

Hide All
1. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) (2002) Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation 106, 31433421.
2. Grundy, SM (2005) Metabolic syndrome scientific statement by the American Heart Association and the National Heart, Lung, and Blood Institute. Arterioscler Thromb Vasc Biol 25, 22432244.
3. Ministry of Health, Labor and Welfare (Japanese government) (2015) National health and nutrition survey in 2012. http://www.mhlw.go.jp/bunya/kenkou/eiyou/dl/h24-houkoku.pdf (accessed April 2015).
4. Esmaillzadeh, A, Kimiagar, M, Mehrabi, Y, et al. (2007) Dietary patterns, insulin resistance, and prevalence of the metabolic syndrome in women. Am J Clin Nutr 85, 910918.
5. Yoo, S, Nicklas, T, Baranowski, T, et al. (2004) Comparison of dietary intakes associated with metabolic syndrome risk factors in young adults: the Bogalusa Heart Study. Am J Clin Nutr 80, 841848.
6. Steffen, LM, Van Horn, L, Daviglus, ML, et al. (2014) A modified Mediterranean diet score is associated with a lower risk of incident metabolic syndrome over 25 years among young adults: the CARDIA (Coronary Artery Risk Development in Young Adults) study. Br J Nutr 112, 16541661.
7. Shin, HJ, Cho, E, Lee, HJ, et al. (2014) Instant noodle intake and dietary patterns are associated with distinct cardiometabolic risk factors in Korea. J Nutr 144, 12471255.
8. Brader, L, Uusitupa, M, Dragsted, LO, et al. (2014) Effects of an isocaloric healthy Nordic diet on ambulatory blood pressure in metabolic syndrome: a randomized SYSDIET sub-study. Eur J Clin Nutr 68, 5763.
9. Nanri, H, Nakamura, K, Hara, M, et al. (2011) Association between dietary pattern and serum C-reactive protein in Japanese men and women. J Epidemiol 21, 122131.
10. Deshmukh-Taskar, PR, O’Neil, CE, Nicklas, TA, et al. (2009) Dietary patterns associated with metabolic syndrome, sociodemographic and lifestyle factors in young adults: the Bogalusa Heart Study. Public Health Nutr 12, 24932503.
11. Baxter, AJ, Coyne, T & McClintock, C (2006) Dietary patterns and metabolic syndrome – a review of epidemiologic evidence. Asia Pac J Clin Nutr 15, 134142.
12. Gutteridge, JM (1994) Biological origin of free radicals, and mechanisms of antioxidant protection. Chem Biol Interact 91, 133140.
13. Rock, CL, Jacob, RA & Bowen, PE (1996) Update on the biological characteristics of the antioxidant micronutrients: vitamin C, vitamin E, and the carotenoids. J Am Diet Assoc 96, 693702.
14. Lee, KU (2001) Oxidative stress markers in Korean subjects with insulin resistance syndrome. Diabetes Res Clin Pract 54, S29S33.
15. Hansel, B, Giral, P, Nobecourt, E, et al. (2004) Metabolic syndrome is associated with elevated oxidative stress and dysfunctional dense high-density lipoprotein particles displaying impaired antioxidative activity. J Clin Endocrinol Metab 89, 49634971.
16. Ford, ES, Mokdad, AH, Giles, WH, et al. (2003) The metabolic syndrome and antioxidant concentrations: findings from the Third National Health and Nutrition Examination Survey. Diabetes 52, 23462352.
17. Sugiura, M, Nakamura, M, Ogawa, K, et al. (2008) Associations of serum carotenoid concentrations with the metabolic syndrome: interaction with smoking. Br J Nutr 100, 12971306.
18. Coyne, T, Ibiebele, TI, Baade, PD, et al. (2009) Metabolic syndrome and serum carotenoids: findings of a cross-sectional study in Queensland, Australia. Br J Nutr 102, 16681677.
19. Sluijs, I, Beulens, JW, Grobbee, DE, et al. (2009) Dietary carotenoid intake is associated with lower prevalence of metabolic syndrome in middle-aged and elderly men. J Nutr 139, 987992.
20. Suzuki, K, Ito, Y, Inoue, T, et al. (2011) Inverse association of serum carotenoids with prevalence of metabolic syndrome among Japanese. Clin Nutr 30, 369375.
21. Beydoun, MA, Shroff, MR, Chen, X, et al. (2011) Serum antioxidant status is associated with metabolic syndrome among U.S. adults in recent national surveys. J Nutr 141, 903913.
22. Liu, J, Shi, WQ, Cao, Y, et al. (2014) Higher serum carotenoid concentrations associated with a lower prevalence of the metabolic syndrome in middle-aged and elderly Chinese adults. Br J Nutr 112, 20412048.
23. Czernichow, S, Vergnaud, AC, Galan, P, et al. (2009) Effects of long-term antioxidant supplementation and association of serum antioxidant concentrations with risk of metabolic syndrome in adults. Am J Clin Nutr 90, 329335.
24. Sugiura, M, Nakamura, M, Ikoma, Y, et al. (2005) High serum carotenoids are inversely associated with serum gamma-glutamyltransferase in alcohol drinkers within normal liver function. J Epidemiol 15, 180186.
25. Metabolic Syndrome Diagnostic Criteria Examination Committee (2005) Definition and the diagnostic standard for metabolic syndrome – Committee to Evaluate Diagnostic Standards for Metabolic Syndrome. Nippon Naika Gakkai Zasshi 94, 794809 (in Japanese).
26. Matsuzawa, Y (2005) Metabolic syndrome – definition and diagnostic criteria in Japan. J Atheroscler Thromb 12, 301.
27. Matsuzawa, Y, Inoue, S, Ikeda, Y, et al. (2000) New definition of obesity and diagnostic criteria for high-risk obesity. Himan Kenkyu 6, 1228 (in Japanese).
28. Jay, D, Hitomi, H & Griendling, KK (2006) Oxidative stress and diabetic cardiovascular complications. Free Radic Biol Med 40, 183192.
29. Griendling, KK & FitzGerald, GA (2003) Oxidative stress and cardiovascular injury: part II: animal and human studies. Circulation 108, 20342040.
30. Oberly, LW (1988) Free radicals and diabetes. Free Radic Biol Med 5, 113124.
31. Dandona, P, Thusu, K, Cook, S, et al. (1996) Oxidative damage to DNA in diabetes mellitus. Lancet 347, 444445.
32. Evans, JL, Goldfine, ID, Maddux, BA, et al. (2002) Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev 23, 599622.
33. Marseglia, L, Manti, S, D’Angelo, G, et al. (2014) Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci 16, 378400.
34. Maddux, BA, See, W, Lawrence, JC Jr, et al. (2001) Protection against oxidative stress-induced insulin resistance in rat L6 muscle cells by mircomolar concentrations of alpha-lipoic acid. Diabetes 50, 404410.
35. Rudich, A, Tirosh, A, Potashnik, R, et al. (1998) Prolonged oxidative stress impairs insulin-induced GLUT4 translocation in 3T3-L1 adipocytes. Diabetes 47, 15621569.
36. Matsuoka, T, Kajimoto, Y, Watada, H, et al. (1997) Glycation-dependent, reactive oxygen species-mediated suppression of the insulin gene promoter activity in HIT cells. J Clin Invest 99, 144150.
37. Nakazono, K, Watanabe, N, Matsuno, K, et al. (1991) Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci U S A 88, 1004510048.
38. Ohara, Y, Peterson, TE & Harrison, DG (1993) Hypercholesterolemia increases endothelial superoxide anion production. J Clin Invest 91, 25462551.
39. Stanner, SA, Hughes, J, Kelly, CN, et al. (2004) A review of the epidemiological evidence for the ‘antioxidant hypothesis. Public Health Nutr 7, 407422.
40. Knekt, P, Ritz, J, Pereira, MA, et al. (2004) Antioxidant vitamins and coronary heart disease risk: a pooled analysis of 9 cohorts. Am J Clin Nutr 80, 15081520.
41. Ford, ES, Will, JC, Bowman, BA, et al. (1999) Diabetes mellitus and serum carotenoids: findings from the Third National Health and Nutrition Examination Survey. Am J Epidemiol 149, 168176.
42. Hozawa, A, Jacobs, DR Jr, Steffes, MW, et al. (2009) Circulating carotenoid concentrations and incident hypertension: the Coronary Artery Risk Development in Young Adults (CARDIA) study. J Hypertens 27, 237242.
43. Gey, KF, Stahelin, HB & Eichholzer, M (1993) Poor plasma status of carotene and vitamin C is associated with higher mortality from ischemic heart disease and stroke: Basel Prospective Study. Clin Investig 71, 36.
44. Ito, Y, Kurata, M, Suzuki, K, et al. (2006) Cardiovascular disease mortality and serum carotenoid levels: a Japanese population-based follow-up study. J Epidemiol 16, 154160.
45. Morris, DL, Kritchevsky, SB & Davis, CE (1994) Serum carotenoids and coronary heart disease. The Lipid Research Clinics Coronary Primary Prevention Trial and Follow-up Study. JAMA 272, 14391441.
46. Arnlöv, J, Zethelius, B, Risérus, U, et al. (2009) Serum and dietary beta-carotene and alpha-tocopherol and incidence of type 2 diabetes mellitus in a community-based study of Swedish men: report from the Uppsala Longitudinal Study of Adult Men (ULSAM) study. Diabetologia 52, 97105.
47. Czernichow, S, Bertrais, S, Blacher, J, et al. (2005) Effect of supplementation with antioxidants upon long-term risk of hypertension in the SU.VI.MAX study: association with plasma antioxidant levels. J Hypertens 23, 20132018.
48. Czernichow, S, Couthouis, A, Bertrais, S, et al. (2006) Antioxidant supplementation does not affect fasting plasma glucose in the Supplementation with Antioxidant Vitamins and Minerals (SU.VI.MAX) study in France: association with dietary intake and plasma concentrations. Am J Clin Nutr 84, 395399.
49. Bonet, ML, Ribot, J & Palou, A (2012) Lipid metabolism in mammalian tissues and its control by retinoic acid. Biochim Biophys Acta 1821, 177189.
50. Sugiura, M, Nakamura, M, Ikoma, Y, et al. (2006) The homeostasis model assessment-insulin resistance index is inversely associated with serum carotenoids in non-diabetic subjects. J Epidemiol 16, 7178.
51. Montonen, J, Knekt, P, Järvinen, R, et al. (2004) Dietary antioxidant intake and risk of type 2 diabetes. Diabetes Care 27, 362366.
52. Gabriel, HE, Liu, Z, Crott, JW, et al. (2006) A comparison of carotenoids, retinoids, and tocopherols in the serum and buccal mucosa of chronic cigarette smokers versus nonsmokers. Cancer Epidemiol Biomarkers Prev 15, 993999.
53. Widome, R, Jacobs, DR Jr, Hozawa, A, et al. (2010) Passive smoke exposure and circulating carotenoids in the CARDIA study. Ann Nutr Metab 56, 113118.
54. Sugiura, M, Nakamura, M, Ogawa, K, et al. (2009) Synergistic interaction of cigarette smoking and alcohol drinking with serum carotenoid concentrations: findings from a middle-aged Japanese population. Br J Nutr 102, 12111219.
55. Hozawa, A, Jacobs, DR Jr, Steffes, MW, et al. (2006) Associations of serum carotenoid concentrations with the development of diabetes and with insulin concentration: interaction with smoking: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am J Epidemiol 163, 929937.
56. Goodner, KL, Rouseff, RL & Hofsommer, HJ (2001) Orange, mandarin, and hybrid classification using multivariate statistics based on carotenoid profiles. J Agric Food Chem 49, 11461150.
57. Holden, JM, Eldridge, AL, Beecher, GR, et al. (1999) Carotenoid content of U.S. foods: an update of the database. J Food Comp Anal 12, 169196.
58. Sugiura, M, Matsumoto, H, Kato, M, et al. (2004) Multiple linear regression analysis of the seasonal changes in the serum concentration of beta-cryptoxanthin. J Nutr Sci Vitaminol (Tokyo) 50, 196202.

Keywords

Type Description Title
WORD
Supplementary materials

Sugiura supplementary material S1
Supplemental Tables

 Word (71 KB)
71 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed