Skip to main content Accessibility help
×
Home

Hepatic expression of sodium-dependent vitamin C transporters: ontogeny, subtissular distribution and effect of chronic liver diseases

  • Rocio I. R. Macias (a1) (a2), Carlos Hierro (a3), Susana Cuesta de Juan (a3), Felipe Jimenez (a1) (a3), Francisco Gonzalez-San Martin (a1) (a3) and Jose J. G. Marin (a1) (a2)...

Abstract

Ascorbic acid uptake is a key step in determining the overall bioactivity of this vitamin. Expression of Na-dependent vitamin C transporters (SVCT; SLC23A1 and SLC23A2) during long-term oxidative stress occurring in several chronic liver diseases may determine the antioxidant defence in this organ. In patients with hepatocellular cholestasis, primary biliary cirrhosis, haemochromatosis and non-alcoholic steatohepatitis, using real-time RT-PCR, an enhanced hepatic expression of both SLC23A1 and SLC23A2, but not other organic anions transporters, such as OATP1A2, OATP1B1 and OATP1B3, was found. To further investigate these findings, we used secondary biliary cirrhosis induced in rats by long-term biliary obstruction as a model of chronic liver disease accompanied by oxidative stress because of bile acid accumulation. In control rat liver, expression of Slc23a1 was low at birth, increased progressively up to adulthood and decreased in senescence, whereas expression of Slc23a2 did not change significantly after birth. In 8-week-old rats, immunohistochemistry and confocal microscopy studies revealed the expression in hepatocytes and bile duct cells of mainly Slc23a1, whereas both Slc23a1 and Slc23a2 were expressed in endothelial, stellate and Kupffer cells. In adult rats, when obstructive cholestasis was maintained for 8 weeks, a significant up-regulation of Slc23a2 accompanied by a down-regulation of Slc23a1 was found. In sum, there is a selective cell-type distribution of SVCT in the liver tissue, which, in addition to differential control in the expression of both isoforms, may play a role in the ability of different liver cell types to take up vitamin C under physiological and pathological conditions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Hepatic expression of sodium-dependent vitamin C transporters: ontogeny, subtissular distribution and effect of chronic liver diseases
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Hepatic expression of sodium-dependent vitamin C transporters: ontogeny, subtissular distribution and effect of chronic liver diseases
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Hepatic expression of sodium-dependent vitamin C transporters: ontogeny, subtissular distribution and effect of chronic liver diseases
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Professor J. J. G. Marin, fax +34 923 294669, email jjgmarin@usal.es

References

Hide All
1 Wilson, JX (2005) Regulation of vitamin C transport. Annu Rev Nutr 25, 105125.
2 Rose, RC (1987) Solubility properties of reduced and oxidized ascorbate as determinants of membrane permeation. Biochim Biophys Acta 924, 254256.
3 Rumsey, SC, Kwon, O, Xu, GW, et al. (1997) Glucose transporter isoforms GLUT1 and GLUT3 transport dehydroascorbic acid. J Biol Chem 272, 1898218989.
4 Rumsey, SC, Daruwala, R, Al-Hasani, H, et al. (2000) Dehydroascorbic acid transport by GLUT4 in Xenopus oocytes and isolated rat adipocytes. J Biol Chem 275, 2824628253.
5 Rivas, CI, Zuniga, FA, Salas-Burgos, A, et al. (2008) Vitamin C transporters. J Physiol Biochem 64, 357375.
6 Daruwala, R, Song, J, Koh, WS, et al. (1999) Cloning and functional characterization of the human sodium-dependent vitamin C transporters hSVCT1 and hSVCT2. FEBS Lett 460, 480484.
7 Tsukaguchi, H, Tokui, T, Mackenzie, B, et al. (1999) A family of mammalian Na+-dependent l-ascorbic acid transporters. Nature 399, 7075.
8 Marin, JJ, Serrano, MA, Perez, MJ, et al. (2009) Molecular bases of the cellular handling of vitamin C. Transport and metabolism in health and disease. In Vitamin C: Daily Requirements, Dietary Sources and Adverse Effects [Columbus, F, editor]. Hauppauge, NY: Nova Science Publishers.
9 MacDonald, L, Thumser, AE & Sharp, P (2002) Decreased expression of the vitamin C transporter SVCT1 by ascorbic acid in a human intestinal epithelial cell line. Br J Nutr 87, 97100.
10 Boyer, JC, Campbell, CE, Sigurdson, WJ, et al. (2005) Polarized localization of vitamin C transporters, SVCT1 and SVCT2, in epithelial cells. Biochem Biophys Res Commun 334, 150156.
11 Savini, I, Rossi, A, Pierro, C, et al. (2008) SVCT1 and SVCT2: key proteins for vitamin C uptake. Amino Acids 34, 347355.
12 Perez, MJ, Castano, B, Gonzalez-Buitrago, JM, et al. (2007) Multiple protective effects of melatonin against maternal cholestasis-induced oxidative stress and apoptosis in the rat fetal liver-placenta-maternal liver trio. J Pineal Res 43, 130139.
13 Perez, MJ, Castano, B, Jimenez, S, et al. (2008) Role of vitamin C transporters and biliverdin reductase in the dual pro-oxidant and anti-oxidant effect of biliary compounds on the placental–fetal unit in cholestasis during pregnancy. Toxicol Appl Pharmacol 232, 327336.
14 Beattie, AD & Sherlock, S (1976) Ascorbic acid deficiency in liver disease. Gut 17, 571575.
15 National Academy of Sciences (2002) vol. 2. Washington, DC: National Institutes of Health.
16 Monte, MJ, Morales, AI, Arevalo, M, et al. (1996) Reversible impairment of neonatal hepatobiliary function by maternal cholestasis. Hepatology 23, 12081217.
17 Mashige, F, Imai, K & Osuga, T (1976) A simple and sensitive assay of total serum bile acids. Clin Chim Acta 70, 7986.
18 Garcia-Marin, JJ, Villanueva, GR & Esteller, A (1988) Diabetes-induced cholestasis in the rat: possible role of hyperglycemia and hypoinsulinemia. Hepatology 8, 332340.
19 Pastore, P, Rizzetto, T, Curcuruto, O, et al. (2001) Characterization of dehydroascorbic acid solutions by liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom 15, 20512057.
20 Kullak-Ublick, GA, Stieger, B & Meier, PJ (2004) Enterohepatic bile salt transporters in normal physiology and liver disease. Gastroenterology 126, 322342.
21 Kuo, SM, MacLean, ME, McCormick, K, et al. (2004) Gender and sodium-ascorbate transporter isoforms determine ascorbate concentrations in mice. J Nutr 134, 22162221.
22 Perez, MJ, Macias, RI, Duran, C, et al. (2005) Oxidative stress and apoptosis in fetal rat liver induced by maternal cholestasis. Protective effect of ursodeoxycholic acid. J Hepatol 43, 324332.
23 Perez, MJ & Briz, O (2009) Bile-acid-induced cell injury and protection. World J Gastroenterol 15, 16771689.
24 Donner, MG, Schumacher, S, Warskulat, U, et al. (2007) Obstructive cholestasis induces TNF-alpha- and IL-1-mediated periportal downregulation of Bsep and zonal regulation of Ntcp, Oatp1a4, and Oatp1b2. Am J Physiol Gastrointest Liver Physiol 293, G1134G1146.
25 Geier, A, Wagner, M, Dietrich, CG, et al. (2007) Principles of hepatic organic anion transporter regulation during cholestasis, inflammation and liver regeneration. Biochim Biophys Acta 1773, 283308.
26 Varma, S, Sobey, K, Campbell, CE, et al. (2009) Hierarchal contribution of N- and C-terminal sequences to the differential localization of homologous sodium-dependent vitamin C transporters, SVCT1 and SVCT2, in epithelial cells. Biochemistry 48, 29692980.
27 Aguirre, R & May, JM (2008) Inflammation in the vascular bed: importance of vitamin C. Pharmacol Ther 119, 96103.
28 Eck, P, Erichsen, HC, Taylor, JG, et al. (2004) Comparison of the genomic structure and variation in the two human sodium-dependent vitamin C transporters, SLC23A1 and SLC23A2. Hum Genet 115, 285294.

Keywords

Type Description Title
WORD
Supplementary materials

Macias Supplementary Table
Supplemental Table 1. Gene-specific oligonucleotide sequences for primers used in real-time quantitative PCR

 Word (103 KB)
103 KB
UNKNOWN
Supplementary materials

Macias Supplementary Figure
Macias Supplementary Figure

 Unknown (3.0 MB)
3.0 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed