Skip to main content Accessibility help
×
Home

Grape antioxidant dietary fibre prevents mitochondrial apoptotic pathways by enhancing Bcl-2 and Bcl-xL expression and minimising oxidative stress in rat distal colonic mucosa

  • María Elvira López-Oliva (a1), María José Pozuelo (a2), Rafael Rotger (a3), Emilia Muñoz-Martínez (a1) and Isabel Goñi (a4)...

Abstract

Grape antioxidant dietary fibre (GADF) is a grape product rich in dietary fibre and natural antioxidants. We reported previously that GADF intake reduced apoptosis and induced a pro-reducing shift in the glutathione (GSH) redox status of the rat proximal colonic mucosa. The aim of the study was to elucidate the molecular mechanisms responsible for the anti-apoptotic effect of GADF and their association with the oxidative environment of the distal colonic mucosa. The ability of GADF to modify colonic crypt cell proliferation was also investigated. Male Wistar rats (n 20) were fed with diets containing either cellulose (control group) or GADF (GADF group) as fibre for 4 weeks. GADF did not modify cell proliferation but induced a significant reduction of colonic apoptosis. The anti-apoptotic proteins Bcl-2 (B-cell lymphoma-2) and Bcl-xL (B-cell lymphoma extra large) were up-regulated in the mitochondria and down-regulated in the cytosol of the GADF mucosa, whereas the opposite was found for the pro-apoptotic protein Bax (Bcl-2-associated X protein), leading to an anti-apoptotic shift in the pattern of expression of the Bcl-2 family. Cytosolic cytochrome c and cleaved caspase-3 levels and caspase-3 activity were reduced by GADF. The modulation of the antioxidant enzyme system and the increase of the cytosolic GSH:glutathione disulfide (GSSG) ratio elicited by GADF helped to reduce oxidative damage. The cytosolic GSH:GSSG ratio was negatively related to apoptosis. These results indicate that GADF acts on the expression of the pro- and anti- apoptotic Bcl-2 proteins, attenuating the mitochondrial apoptotic pathway in the distal colonic mucosa. This effect appears to be associated with the antioxidant properties of GADF.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Grape antioxidant dietary fibre prevents mitochondrial apoptotic pathways by enhancing Bcl-2 and Bcl-xL expression and minimising oxidative stress in rat distal colonic mucosa
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Grape antioxidant dietary fibre prevents mitochondrial apoptotic pathways by enhancing Bcl-2 and Bcl-xL expression and minimising oxidative stress in rat distal colonic mucosa
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Grape antioxidant dietary fibre prevents mitochondrial apoptotic pathways by enhancing Bcl-2 and Bcl-xL expression and minimising oxidative stress in rat distal colonic mucosa
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr M. E. López-Oliva, fax +34 913 941 838, email elopez@farm.ucm.es

References

Hide All
1Donaldson, MS (2004) Nutrition and cancer: a review of the evidence for an anti-cancer diet. J Nutr 3, 1940.
2Arii, M, Miki, M, Hosoyama, R, et al. (1998) Chemopreventive effect of grape seed extract on intestinal carcinogenesis in the Apc/min mouse. Proc Am Assoc Cancer Res 39, 2027.
3Seeram, NP, Adams, LS, Henning, SM, et al. (2005) In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice. J Nutr Biochem 16, 360367.
4Delmas, D, Rabe, C, Lacour, S, et al. (2003) Resveratrol-induced apoptosis is associated with Fas redistribution in the rafts and the formation of a death-inducing signaling complex in colon cancer cells. J Biol Chem 278, 4148241490.
5Aggarwall, BB & Shishodia, S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71, 13971421.
6Ye, X, Kroha, RL, Liu, W, et al. (1999) The cytotoxic effects of a novel IH636 grape seed proanthocyanidin extract on cultured human cancer cells. Moll Cell Biochem 196, 99108.
7Roy, AM, Baliga, MS, Elmets, CA, et al. (2005) Grape seed proanthocyanidins induce apoptosis through p53. Bax, and caspase 3 pathways. Neoplasia 7, 2436.
8Ray, SD, Kumar, MA & Bagchi, D (1999) A novel proanthocyanidin IH636 grape seed extract increases in vivo bcl-XL expression and prevents acetaminophen-induced programmed and unprogrammed cell death in mouse liver. Arch Biochem Biophys 369, 4258.
9Bagchi, M, Kuszynski, CA, Balmoori, J, et al. (2001) Protective effects of antioxidants against smokeless tobacco-induced oxidative stress and modulation of Bcl-2 and p53 genes in human oral keratinocytes. Free Radic Res 35, 181194.
10Xu, Y, Khaoustov, VI, Wang, H, et al. (2009) Freeze-dried grape powder attenuates mitochondria- and oxidative stress-mediated apoptosis in liver cells. J Agric Food Chem 57, 93249331.
11Young, JF, Dragsted, LO, Daneshvar, B, et al. (2000) The effect of grape-skin extract on oxidative status. Br J Nutr 84, 505513.
12Bobek, P (1999) Dietary tomato and grape pomace in rats: effect on lipids in serum and liver and on antioxidant status. Br J Biomed Sci 56, 109113.
13Dani, C, Oliboni, LS, Pasquali, MA, et al. (2008) Intake of purple grape juice as a hepatoprotective agent in Wistar rats. J Med Food 11, 127132.
14Roig, R, Cascón, E, Arola, L, et al. (2002) Procyanidins protect Fao cells against hydrogen peroxide-induced oxidative stress. Biochim Biophys Acta 1572, 2530.
15Puiggrós, F, Llópiz, N, Ardévol, A, et al. (2005) Grape seed procyanidins prevent oxidative injury by modulating the expression of antioxidant enzyme systems. J Agric Food Chem 53, 60806086.
16Moran, JK, Gutteridge, JM & Quintan, GJ (2001) Thiols in cellular redox signaling and control. Curr Med Chem 8, 763772.
17Droge, W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82, 4795.
18Aw, TY (2003) Cellular redox: modulation of intestinal epithelial cell proliferation. News Physiol Sci 18, 201204.
19Saura-Calixto, F (1998) Antioxidant dietary fiber product: a new concept and a potential food ingredient. J Agric Food Chem 46, 43034306.
20Goñi, I & Serrano, J (2005) The intake of dietary fiber from grape seeds modifies the antioxidant status in rat cecum. J Sci Food Agric 85, 18771881.
21Martín-Carrón, N, Saura-Calixto, F & Goñi, I (2000) Effects of dietary fibre and polyphenol-rich grape products on lipidaemia and nutritional parameters in rats. J Agric Food Chem 80, 11831188.
22Pérez-Jiménez, J, Serrano, J, Tabernero, M, et al. (2008) Effects of grape antioxidant dietary fiber in cardiovascular disease risk factors. Nutrition 24, 646653.
23López-Oliva, ME, Agis-Torres, A, García-Palencia, P, et al. (2006) Induction of epithelial hypoplasia in rat cecal and distal colonic mucosa by grape antioxidant dietary fiber. Nutr Res 26, 653658.
24López-Oliva, ME, Agis-Torres, A, Goñi, I, et al. (2010) Grape antioxidant dietary fibre reduced apoptosis and induced a pro-reducing shift in the glutathione redox state of the rat proximal colonic mucosa. Br J Nutr 103, 11101117.
25Saura-Calixto, F & Goñi, I (2006) Fibra dietetica antioxidante contenierdo physillium y/o fibra soluble (Functional formulation based on antioxidant dietary fiber and soluble fiber). Patent CSIC ES: 2259258 A1.
26Saura-Calixto, F & Larrauri-García, JA (1999) Concentrado de fibra dietética natural de uva y su procedimiento de obtención (Natural dietetic fibre concentrate and the method for obtaining it). Patent CSIC ES 2130092 A1.http://www.espatentes.com/A23/2130092.html.
27Saura-Calixto, F, García-Alonso, A, Goñi, I, et al. (2000) In vitro determination of the indigestible fraction in foods: an alternative to dietary fiber analysis. J Agric Food Chem 48, 33423347.
28Saura-Calixto, F, Serrano, J & Goñi, I (2007) Intake and bioaccessibility of total polyphenols in a whole diet. Food Chem 101, 492501.
29Re, R, Pellegrini, N, Proteggente, A, et al. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26, 12311237.
30Pulido, R, Hernández-García, M & Saura-Calixto, F (2003) Contribution of beverages to the intake of lipophilic and hydrophilic antioxidants in the Spanish diet. Eur J Clin Nutr 7, 12751282.
31Ou, B, Hampsch-Woodill, M & Prior, RL (2001) Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J Agric Food Chem 49, 46194626.
32Bradford, MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 7, 248254.
33Gavrieli, Y, Sherman, Y & Ben-Sasso, SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119, 493501.
34Baker, MA, Cerniglia, GJ & Zaman, A (1990) Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem 190, 360365.
35Flohe, L & Otting, F (1984) Superoxide dismutase assays. Methods Enzymol 105, 93104.
36Paglia, DE & Valentine, WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70, 158169.
37Carlberg, I & Mannervick, B (1985) Glutathione reductase. Methods Enzymol 113, 484490.
38Aebi, H (1984) Catalase in vitro. Methods Enzymol 105, 121126.
39Yang, K, Lamprecht, SA, Liu, Y, et al. (2000) Chemoprevention studies of the flavonoids quercetin and rutin in normal and azoxymethane-treated mouse colon. Carcinogenesis 21, 16551660.
40Ye, X, Krohn, RL, Liu, W, et al. (1999) The cytotoxic effects of a novel IH636 grape seed proanthocyanidin extract on cultured human cancer cells. Mol Cell Biochem 196, 99108.
41Li, L & Zhong, J (2004) Effect of grape procyanidins on the apoptosis and mitochondrial transmembrane potential of thymus cells. Wei Sheng Yan Jiu 33, 191194.
42Alvira, D, Yeste-Velasco, M, Folch, J, et al. (2007) Comparative analysis of the effects of resveratrol in two apoptotic models: inhibition of complex I and potassium deprivation in cerebellar neurons. Neuroscience 147, 746756.
43Martin, SJ & Green, DR (1995) Protease activation during apoptosis: death by a thousand cuts? Cell 82, 349352.
44Basanez, G, Sharpe, JC, Galanis, J, et al. (2002) Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J Biol Chem 277, 4936049365.
45Kluck, RM, Bossy-Wetzel, E, Green, DR, et al. (1997) The release of cytochrome c from mitochondria:a primary site for Bcl-2 regulation of apoptosis. Science 275, 11321136.
46Merritt, AJ, Potten, CS, Watson, AJ, et al. (1995) Differential expression of bcl-2 in intestinal epithelia: correlation with attenuation of apoptosis in colonic crypts and the incidence of colonic neoplasia. J Cell Sci 108, 22612271.
47Krajewski, S, Krajewska, M, Shabaik, A, et al. (1994) Immunohistochemical determination of in vivo distribution of Bax, a dominant inhibitor of Bcl-2. Am J Pathol 145, 13231336.
48Brito, PM, Simões, NF, Almeida, LM, et al. (2008) Resveratrol disrupts peroxynitrite-triggered mitochondrial apoptotic pathway: a role for Bcl-2. Apoptosis 13, 10431053.
49Zamzami, N, Brenner, C, Marzo, I, et al. (1998) Subcellular and submitochondrial mode of action of Bcl-2-like oncoproteins. Oncogene 16, 22652282.
50Marzo, I, Brenner, C, Zamzami, N, et al. (1998) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281, 20272031.
51Green, DR & Reed, JC (1998) Mitochondria and apoptosis. Science 281, 13091312.
52Bournival, J, Quessy, P & Martinoli, MG (2009) Protective effects of resveratrol and quercetin against MPP+-induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons. Cell Mol Neurobiol 29, 11691180.
53Mates, JM & Sánchez-Jiménez, FM (2000) Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol 32, 157170.
54Qin, F, Yan, C, Patel, R, et al. (2006) Vitamins C and E attenuate apoptosis, β-adrenergic receptor desensitization, and sarcoplasmic reticular Ca2+ ATPase downregulation after myocardial infarction. Free Radic Biol Med 40, 18271842.
55Ray, SD, Patel, N, Shah, N, et al. (2006) Pre-exposure to a novel nutritional mixture containing a series of phytochemicals prevents acetaminophen-induced programmed and unprogrammed cell deaths by enhancing BCL-XL expression and minimizing oxidative stress in the liver. Mol Cell Biochem 293, 119136.
56Gerard-Monier, D & Chaudiere, J (1996) Metabolism and antioxidant functions of glutathione. Path Biol 4, 7785.
57Jones, DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8, 18651879.
58Masella, R, Vari, R, D'Archivio, M, et al. (2004) Extra virgin olive oil biphenols inhibit cell-mediated oxidation of LDL by increasing the mRNA transcription of glutathione-related enzymes. J Nutr 134, 785791.
59Ray, SD, Lam, TS, Rotollo, JA, et al. (2004) Oxidative stress is the master operator of drug and chemically-induced programmed and unprogrammed cell death: implications of natural antioxidants in vivo. Biofactors 21, 223232.
60Du, Y, Guo, H & Lou, H (2007) Grape seed polyphenols protect cardiac cells from apoptosis via induction of endogenous antioxidant enzymes. J Agric Food Chem 55, 16951701.
61Yeh, CT, Ching, LC & Yen, GC (2009) Inducing gene expression of cardiac antioxidant enzymes by dietary phenolic acids in rats. J Nutr Biochem 20, 163171.
62Li, S, Yan, T, Yang, JQ, et al. (2000) The role of cellular glutathione peroxidase redox regulation in the suppression of tumor cell growth by manganese superoxide dismutase. Cancer Res 60, 39273939.

Keywords

Grape antioxidant dietary fibre prevents mitochondrial apoptotic pathways by enhancing Bcl-2 and Bcl-xL expression and minimising oxidative stress in rat distal colonic mucosa

  • María Elvira López-Oliva (a1), María José Pozuelo (a2), Rafael Rotger (a3), Emilia Muñoz-Martínez (a1) and Isabel Goñi (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed