Skip to main content Accessibility help
×
Home

Generalised equations for the prediction of percentage body fat by anthropometry in adult men and women aged 18–81 years

  • Siobhan Leahy (a1), Cian O'Neill (a1), Rhoda Sohun (a1), Clodagh Toomey (a1) and Philip Jakeman (a1)...

Abstract

Anthropometric data indicate that the human phenotype is changing. Today's adult is greater in stature, body mass and fat mass. Accurate measurement of body composition is necessary to maintain surveillance of obesity within the population and to evaluate associated interventions. The aim of the present study was to construct and validate generalised equations for percentage body fat (%BF) prediction from anthropometry in 1136 adult men and women. Reference values for %BF were obtained using dual-energy X-ray absorptiometry. Skinfold thickness (SF) at ten sites and girth (G) at seven sites were measured on 736 men and women aged 18–81 years (%BF 5·1–56·8 %). Quantile regression was employed to construct prediction equations from age and log-transformed SF and G measures. These equations were then cross-validated on a cohort of 400 subjects of similar age and fatness. The following generalised equations were found to most accurately predict %BF: $Men:\,(age\times 0\cdot 1) + (logtricepsSF\times 7\cdot 6) + (logmidaxillaSF\times 8\cdot 8) + (logsuprspinaleSF\times 11\cdot 9) - 11\cdot 3$ (standard error of the estimate: 2·5 %, 95 % limits of agreement: − 4·8, +4·9) $Women:\,(age\times 0\cdot 1) + (logabdominalG\times 39\cdot 4) + (logmidaxillaSF\times 4\cdot 9) + (logbicepsSF\times 11\cdot 0) + (logmedialcalfSF\times 9\cdot 1) - 73\cdot 5$ (standard error of the estimate: 3·0 %, 95 % limits of agreement: − 5·7, + 5·9) These generalised anthropometric equations accurately predict %BF and are suitable for the measurement of %BF in adult men and women of varying levels of fatness across the lifespan.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Generalised equations for the prediction of percentage body fat by anthropometry in adult men and women aged 18–81 years
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Generalised equations for the prediction of percentage body fat by anthropometry in adult men and women aged 18–81 years
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Generalised equations for the prediction of percentage body fat by anthropometry in adult men and women aged 18–81 years
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Professor P. Jakeman, fax +353 61 202814, E-mail: phil.jakeman@ul.ie

References

Hide All
1NIH (2011) Strategic Plan for NIH Obesity Research. National Institute of Health Publication no. 11-5493. Washington, DC: US Department of Health and Human Services.
2WHO (2011) Factsheet: obesity and overweight: World Health Organization. http://www.who.int/mediacentre/factsheets/fs311/en/index.html (accessed accessed July 2011).
3Anonymous (2011) Urgently needed: a framework convention for obesity control. Lancet 378, 741.
4Kelly, TL, Wilson, KE & Heymsfield, SB (2009) Dual energy X-ray absorptiometry body composition reference values from NHANES. PLoS ONE 4, e7038.
5Newman, AB, Sun Lee, J, Visser, M, et al. (2005) Weight change and the conservation of lean mass in old age: the Health, Aging and Body Composition Study. Am J Clin Nutr 82, 872878.
6Wang, ZM, Deurenberg, P, Guo, SS, et al. (1998) Six-compartment body composition model: inter-method comparisons of total body fat measurement. Int J Obes 22, 329337.
7Clasey, JL, Kanaley, JA, Wideman, L, et al. (1999) Validity of methods of body composition assessment in young and older men and women. J Appl Physiol 86, 17281738.
8Wang, J, Thornton, C, Kolesnik, S, et al. (2000) Anthropometry in body composition. an overview. Ann N Y Acad Sci 904, 317325.
9Durnin, JVGA & Rahaman, MM (1967) The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br J Nutr 21, 681689.
10Durnin, JVGA & Womersley, J (1974) Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. Br J Nutr 32, 7779.
11Rothney, MP, Brychta, RJ, Schaefer, EV, et al. (2009) Body composition measured by dual-energy X-ray absorptiometry half-body scans in obese adults. Obesity 17, 12811286.
12Marfell-Jones, M, Olds, T, Stewart, A, et al. (2006) International Standards for Anthropometric Assessment. Potchefstroom, SA: The International Society for the Advancement of Kinanthropometry.
13Bland, JM & Altman, DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1, 307310.
14Heyward, VH & Wagner, DR (2004) Applied Body Composition Assessment. Champaign, IL: Human Kinetics.
15Leahy, S, O'Neill, C, Sohun, R, et al. (2012) A comparison of dual energy X-ray absorptiometry and bioelectrical impedance analysis to measure total and segmental body composition in healthy young adults. Eur J Appl Physiol 112, 589595.
16Enzi, G, Gasparo, M, Biondetti, P, et al. (1986) Subcutaneous and visceral fat distribution according to sex, age, and overweight, evaluated by computed tomography. Am J Clin Nutr 44, 739746.
17Eston, R, Rowlands, A, Charlesworth, S, et al. (2005) Prediction of DXA-determined whole body fat from skinfolds: importance of including skinfolds from the thigh and calf in young, healthy men and women. Eur J Clin Nutr 59, 695702.
18Hume, P & Marfell-Jones, M (2008) The importance of accurate site location for skinfold measurement. J Sport Sci 26, 13331340.
19Jackson, AS & Pollock, ML (1978) Generalized equations for predicting body density of men. Br J Nutr 40, 497504.
20Heymsfield, SB, Lohman, TG, Wang, Z, et al. (2005) Human Body Composition. Champaign, IL: Human Kinetics.

Keywords

Generalised equations for the prediction of percentage body fat by anthropometry in adult men and women aged 18–81 years

  • Siobhan Leahy (a1), Cian O'Neill (a1), Rhoda Sohun (a1), Clodagh Toomey (a1) and Philip Jakeman (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed