Skip to main content Accessibility help
×
Home

Gastrointestinal modifications and bioavailability of brown seaweed phlorotannins and effects on inflammatory markers

  • Giulia Corona (a1) (a2), Yang Ji (a2), Prapaporn Anegboonlap (a2), Sarah Hotchkiss (a3), Chris Gill (a4), Parveen Yaqoob (a2), Jeremy P. E. Spencer (a2) and Ian Rowland (a2)...

Abstract

Brown seaweeds such as Ascophyllum nodosum are a rich source of phlorotannins (oligomers and polymers of phloroglucinol units), a class of polyphenols that are unique to Phaeophyceae. At present, there is no information on the bioavailability of seaweed polyphenols and limited evidence on their bioactivity in vivo. Consequently, we investigated the gastrointestinal modifications in vitro of seaweed phlorotannins from A. nodosum and their bioavailability and effect on inflammatory markers in healthy participants. In vitro, some phlorotannin oligomers were identified after digestion and colonic fermentation. In addition, seven metabolites corresponding to in vitro-absorbed metabolites were identified. Urine and plasma samples contained a variety of metabolites attributed to both unconjugated and conjugated metabolites (glucuronides and/or sulphates). In both urine and plasma, the majority of the metabolites were found in samples collected at late time points (6–24 h), suggesting colonic metabolism of high-molecular-weight phlorotannins, with three phlorotannin oligomers (hydroxytrifuhalol A, 7-hydroxyeckol, C-O-C dimer of phloroglucinol) identified in urine samples. A significant increase of the cytokine IL-8 was also observed. Our study shows for the first time that seaweed phlorotannins are metabolised and absorbed, predominantly in the large intestine, and there is a large inter-individual variation in their metabolic profile. Three phlorotannin oligomers present in the capsule are excreted in urine. Our study is the first investigation of the metabolism and bioavailability of seaweed phlorotannins and the role of colonic biotransformation. In addition, IL-8 is a possible target for phlorotannin bioactivity.

Copyright

Corresponding author

* Corresponding author: Dr G. Corona, fax +44 208392 3610, email giulia.corona@roehampton.ac.uk

References

Hide All
1. MacArtain, P, Gill, CI, Brooks, M, et al. (2007) Nutritional value of edible seaweeds. Nutr Rev 65, 535543.
2. Park, EJ & Pezzuto, JM (2013) Antioxidant marine products in cancer chemoprevention. Antioxid Redox Signal 19, 115138.
3. Brown, EM, Allsopp, PJ, Magee, PJ, et al. (2014) Seaweed and human health. Nutr Rev 72, 205216.
4. Arasaki, S & Arasaki, T (1983) Low Calorie, High Nutrition Vegetables from the Sea to Help You Look and Feel Better, 1st ed. Tokyo and New York, NY: Japan Publications; Distributor, US, Kodansha International/USA, through Harper & Row.
5. Zava, TT & Zava, DT (2011) Assessment of Japanese iodine intake based on seaweed consumption in Japan: a literature-based analysis. Thyroid Res 4, 14.
6. Guiry, MD & Blunden, G (1991) Seaweed Resources in Europe: Uses and Potential. Chichester and New York, NY: Wiley.
7. Matsumura, Y (2001) Nutrition trends in Japan. Asia Pac J Clin Nutr 10, Suppl, S40S47.
8. Koivikko, R, Eranen, JK, Loponen, J, et al. (2008) Variation of phlorotannins among three populations of Fucus vesiculosus as revealed by HPLC and colorimetric quantification. J Chem Ecol 34, 5764.
9. Dutot, M, Fagon, R, Hemon, M, et al. (2012) Antioxidant, anti-inflammatory, and anti-senescence activities of a phlorotannin-rich natural extract from brown seaweed Ascophyllum nodosum . Appl Biochem Biotechnol 167, 22342240.
10. Wijesinghe, WA & Jeon, YJ (2012) Exploiting biological activities of brown seaweed Ecklonia cava for potential industrial applications: a review. Int J Food Sci Nutr 63, 225235.
11. Ragan, MA & Craigie, JS (1976) Physodes and the phenolic compounds of brown algae. Isolation and characterization of phloroglucinol polymers from Fucus vesiculosus (L.). Can J Biochem 54, 6673.
12. Glombitza, KW, Hauperich, S & Keusgen, M (1997) Phlorotannins from the brown algae Cystophora torulosa and Sargassum spinuligerum . Nat Toxins 5, 5863.
13. Glombitza, KW & Schmidt, A (1999) Nonhalogenated and halogenated phlorotannins from the brown alga carpophyllum angustifolium. J Nat Prod 62, 12381240.
14. Glombitza, KW & Vogels, HP (1985) Antibiotics from algae. XXXV. Phlorotannins from Ecklonia maxima1. Planta Med 51, 308312.
15. Glombitza, KW & Zieprath, G (1989) Phlorotannins from the brown alga Analipus japonicus1. Planta Med 55, 171175.
16. Pal Singh, I & Bharate, SB (2006) Phloroglucinol compounds of natural origin. Nat Prod Rep 23, 558591.
17. Kim, SK & Himaya, SW (2011) Medicinal effects of phlorotannins from marine brown algae. Adv Food Nutr Res 64, 97109.
18. Tsujimoto, M, Yokota, S, Vilcek, J, et al. (1986) Tumor necrosis factor provokes superoxide anion generation from neutrophils. Biochem Biophys Res Commun 137, 10941100.
19. Kang, MC, Cha, SH, Wijesinghe, WA, et al. (2013) Protective effect of marine algae phlorotannins against AAPH-induced oxidative stress in zebrafish embryo. Food Chem 138, 950955.
20. Kim, AR, Shin, TS, Lee, MS, et al. (2009) Isolation and identification of phlorotannins from Ecklonia stolonifera with antioxidant and anti-inflammatory properties. J Agric Food Chem 57, 34833489.
21. Kim, SM, Kang, K, Jeon, JS, et al. (2011) Isolation of phlorotannins from Eisenia bicyclis and their hepatoprotective effect against oxidative stress induced by tert-butyl hyperoxide. Appl Biochem Biotechnol 165, 12961307.
22. DeForge, LE, Fantone, JC, Kenney, JS, et al. (1992) Oxygen radical scavengers selectively inhibit interleukin 8 production in human whole blood. J Clin Invest 90, 21232129.
23. McCord, JM (1987) Oxygen-derived radicals: a link between reperfusion injury and inflammation. Fed Proc 46, 24022406.
24. Queguineur, B, Goya, L, Ramos, S, et al. (2013) Effect of phlorotannin-rich extracts of Ascophyllum nodosum and Himanthalia elongata (Phaeophyceae) on cellular oxidative markers in human HepG2 cells. J Appl Phycol 25, 111.
25. Jung, HA, Jin, SE, Ahn, BR, et al. (2013) Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages. Food Chem Toxicol 59, 199206.
26. Kim, TH, Ku, SK, Lee, T, et al. (2012) Vascular barrier protective effects of phlorotannins on HMGB1-mediated proinflammatory responses in vitro and in vivo . Food Chem Toxicol 50, 21882195.
27. Eom, SH, Kim, DH, Lee, SH, et al. (2013) In vitro antibacterial activity and synergistic antibiotic effects of phlorotannins isolated from Eisenia bicyclis against methicillin-resistant Staphylococcus aureus . Phytother Res 27, 12601264.
28. Biswas, SK, McClure, D, Jimenez, LA, et al. (2005) Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid Redox Signal 7, 3241.
29. Nwosu, F, Morris, J, Lund, VA, et al. (2010) Anti-proliferative and potential anti-diabetic effects of phenolic-rich extracts from edible marine algae. Food Chem 126, 10061012.
30. Ryu, B, Li, Y, Qian, ZJ, et al. (2009) Differentiation of human osteosarcoma cells by isolated phlorotannins is subtly linked to COX-2, iNOS, MMPs, and MAPK signaling: implication for chronic articular disease. Chem Biol Interact 179, 192201.
31. Yoon, NY, Eom, TK, Kim, MM, et al. (2009) Inhibitory effect of phlorotannins isolated from Ecklonia cava on mushroom tyrosinase activity and melanin formation in mouse B16F10 melanoma cells. J Agric Food Chem 57, 41244129.
32. Melanson, JE & MacKinnon, SL (2015) Characterization of phlorotannins from brown algae by LC-HRMS. Methods Mol Biol 1308, 253266.
33. Wheeler, DS, Catravas, JD, Odoms, K, et al. (2004) Epigallocatechin-3-gallate, a green tea-derived polyphenol, inhibits IL-1 beta-dependent proinflammatory signal transduction in cultured respiratory epithelial cells. J Nutr 134, 10391044.
34. Steevensz, AJ, Mackinnon, SL, Hankinson, R, et al. (2012) Profiling phlorotannins in brown macroalgae by liquid chromatography-high resolution mass spectrometry. Phytochem Anal 23, 547553.
35. Jegou, C, Kervarec, N, Cerantola, S, et al. (2015) NMR use to quantify phlorotannins: the case of Cystoseira tamariscifolia, a phloroglucinol-producing brown macroalga in Brittany (France). Talanta 135, 16.
36. Wijesinghe, WA & Jeon, YJ (2012) Exploiting biological activities of brown seaweed Ecklonia cava for potential industrial applications: a review. Int J Food Sci Nutr 63, 225235.
37. Corona, G, Vauzour, D, Amini, A, et al. (2014) The impact of gastrointestinal modifications, blood brain barrier transport, and intracellular metabolism on polyphenol bioavailability: an overview. In Polyphenols in Human Health and Disease, pp. 591604 [RR Watson, VR Preedy and S Zibadi, editors]. San Diego, CA: Elsevier-Academic Press.
38. Vauzour, D, Rodriguez-Mateos, A, Corona, G, et al. (2010) Polyphenols and human health: prevention of disease and mechanisms of action. Nutrients 2, 11061131.
39. Manach, C, Scalbert, A, Morand, C, et al. (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79, 727747.
40. Scalbert, A, Morand, C, Manach, C, et al. (2002) Absorption and metabolism of polyphenols in the gut and impact on health. Biomed Pharmacother 56, 276282.
41. Simmons-Boyce, JL, Purcell, SL, Nelson, CM, et al. (2009) Dietary Ascophyllum nodosum increases urinary excretion of tricarboxylic acid cycle intermediates in male Sprague–Dawley rats. J Nutr 139, 14871494.
42. Singleton, VL (1985) Citation classic-colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. CC/Agr Biol Environ 16, 1818.
43. Mills, DJ, Tuohy, KM, Booth, J, et al. (2008) Dietary glycated protein modulates the colonic microbiota towards a more detrimental composition in ulcerative colitis patients and non-ulcerative colitis subjects. J Appl Microbiol 105, 706714.
44. McDougall, GJ, Dobson, P, Smith, P, et al. (2005) Assessing potential bioavailability of raspberry anthocyanins using an in vitro digestion system. J Agric Food Chem 53, 58965904.
45. Tzounis, X, Vulevic, J, Kuhnle, GG, et al. (2008) Flavanol monomer-induced changes to the human faecal microflora. Br J Nutr 99, 782792.
46. Ottaviani, JI, Momma, TY, Heiss, C, et al. (2011) The stereochemical configuration of flavanols influences the level and metabolism of flavanols in humans and their biological activity in vivo . Free Radic Biol Med 50, 237244.
47. Corona, G, Tzounis, X, Assunta Dessi, M, et al. (2006) The fate of olive oil polyphenols in the gastrointestinal tract: implications of gastric and colonic microflora-dependent biotransformation. Free Radic Res 40, 647658.
48. Pinto, J, Paiva-Martins, F, Corona, G, et al. (2011) Absorption and metabolism of olive oil secoiridoids in the small intestine. Br J Nutr 105, 16071618.
49. Wang, T, Jonsdottir, R, Liu, H, et al. (2012) Antioxidant capacities of phlorotannins extracted from the brown algae Fucus vesiculosus . J Agric Food Chem 60, 58745883.
50. Ferreres, F, Lopes, G, Gil-Izquierdo, A, et al. (2012) Phlorotannin extracts from fucales characterized by HPLC-DAD-ESI-MSn: approaches to hyaluronidase inhibitory capacity and antioxidant properties. Mar Drugs 10, 27662781.
51. Koivikko, R, Loponen, J, Pihlaja, K, et al. (2007) High-performance liquid chromatographic analysis of phlorotannins from the brown alga Fucus vesiculosus . Phytochem Anal 18, 326332.
52. Kazakevich, Y & LoBrutto, R (2007) HPLC for Pharmaceutical Scientists. Hoboken, NJ: Wiley-Interscience.
53. Yanagida, A, Murao, H, Ohnishi-Kameyama, M, et al. (2007) Retention behavior of oligomeric proanthocyanidins in hydrophilic interaction chromatography. J Chromatogr A 1143, 153161.
54. Miro-Casas, E, Covas, MI, Farre, M, et al. (2003) Hydroxytyrosol disposition in humans. Clin Chem 49, 945952.
55. Rodriguez-Mateos, A, Rendeiro, C, Bergillos-Meca, T, et al. (2013) Intake and time dependence of blueberry flavonoid-induced improvements in vascular function: a randomized, controlled, double-blind, crossover intervention study with mechanistic insights into biological activity. Am J Clin Nutr 98, 11791191.
56. Manach, C, Williamson, G, Morand, C, et al. (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81, 230S242S.
57. Selma, MV, Espin, JC & Tomas-Barberan, FA (2009) Interaction between phenolics and gut microbiota: role in human health. J Agric Food Chem 57, 64856501.
58. Suarez, M, Valls, RM, Romero, MP, et al. (2011) Bioavailability of phenols from a phenol-enriched olive oil. Br J Nutr 106, 16911701.
59. Harada, A, Sekido, N, Akahoshi, T, et al. (1994) Essential involvement of interleukin-8 (IL-8) in acute inflammation. J Leukoc Biol 56, 559564.
60. Fujishima, S, Hoffman, AR, Vu, T, et al. (1993) Regulation of neutrophil interleukin 8 gene expression and protein secretion by LPS, TNF-alpha, and IL-1 beta. J Cell Physiol 154, 478485.
61. Rahman, I, Biswas, SK & Kirkham, PA (2006) Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 72, 14391452.
62. Bohn, T (2014) Dietary factors affecting polyphenol bioavailability. Nutr Rev 72, 429452.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed