Hostname: page-component-84b7d79bbc-lrf7s Total loading time: 0 Render date: 2024-07-29T10:11:07.684Z Has data issue: false hasContentIssue false

Free amino acid patterns of plasma, erythrocytes and leucocytes in hypoproteinaemia

Published online by Cambridge University Press:  24 July 2007

Meera Gupta
Affiliation:
Paediatric Uaematology Unit, Institute of Medical Sciences, Varanasi, India
K. N. Agarwal
Affiliation:
Paediatric Uaematology Unit, Institute of Medical Sciences, Varanasi, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. In pregnancy, severe hypoproteinaemia, cirrhosis and anaemia, plasma free α-amino nitrogen (FαAN) was found to be lowered. The non-essential:essential amino acid ratios, determined by paper chromatography, were increased in hypoproteinaemia and anaemia.

2. The erythrocytic FαAN content increased in early hypoproteinaemia and values lower than normal were found in severe hypoproteinaemia. There was also a rise in anaemia, which was due to increased cellular non-essential amino acids.

3. The leucocytic FαAN was reduced in all hypoproteinaemic states. The increased FαAN values in patients with thyrotoxicosis demonstrated that, in catabolism, leucocytic uptake of amino acids is increased. The non-essential:essential amino acid ratios were decreased in cirrhosis, possibly due to poor biosynthesis of non-essential amino acids by the liver.

Type
Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1973

References

REFERENCES

Anasuya, A. & Narasinga Rao, B. S. (1968). Am. J. clin. Nutr. 21, 723.CrossRefGoogle Scholar
Arroyave, G. (1970). Am. J. clin. Nutr. 23, 703.CrossRefGoogle Scholar
Arroyave, G., Wilson, D., de Funes, C. & Béhar, M. (1962). Am. J. clin. Nzitr. 11, 517.Google Scholar
Bange, C., Bange-Barnoud, R., Rashidi, R., Dion, M. & Peres, G. (1968). Archs Sci. Physiol. 22, 461.Google Scholar
Björnesjö, K. B. (1963). Scand. J. clin. Lab. Invest. 15, 198.Google Scholar
Björnesjö, K. B., Jarnulf, B. & Lausing, E. (1968). Clinica chim. Acta 20, 23.CrossRefGoogle Scholar
Björnesjö, K. R., Mellander, O. & Jagenburg, O. R. (1968). In Calorie Deficiencies and Protein Deficiencies p. 135 [McCance, R. A. and Widdowson, E. M., editors]. London: J. & A. Churchill Ltd.Google Scholar
Bonsnes, R. W. (1947). J. biol. Chem. 168, 345.CrossRefGoogle Scholar
Cline, M. J. (1965). Physiol. Rev. 45, 674.Google Scholar
Committee Report (1970). Am. J. clin. Nutr. 23, 807.CrossRefGoogle Scholar
Cravioto, J. (1958). Am. J. clin. Nutr. 6, 495.CrossRefGoogle Scholar
Goodwin, J. F. (1968). Clin. Chem. 14, 1080.Google Scholar
Gupta, M. & Agarwal, K. N. (1972). Indian. J. med. Sci. 28, 153.Google Scholar
Hill, C. M. (1960). Am. J. med. Technol. 26, 308.Google Scholar
Holt, L. E. Jr, Snyderman, S. E., Norton, P. M., Roitman, E. & Finch, J. (1963). Lancet ii, 1343.Google Scholar
Lee, M. B., Bolger, C. D. & Bridges, J. M. (1969). Acta Haemat. 42, 86.CrossRefGoogle Scholar
McMenamy, R. H., Lund, C. C. & Wallach, D. F. H. (1960). J. clin. Invest. 39, 1688.Google Scholar
Westall, R. G., Roitman, E., De la Pena, C., Rasmussen, H., Cravioto, J., Gomez, F. & Holt, L. E. Jr (1958). Archs Dis. Childh. 33, 449.CrossRefGoogle Scholar
Whitehead, R. G. (1964). Lancet i, 250.CrossRefGoogle Scholar