Skip to main content Accessibility help

Food composition tables in resource-poor settings: exploring current limitations and opportunities, with a focus on animal-source foods in sub-Saharan Africa

  • Julia de Bruyn (a1) (a2) (a3), Elaine Ferguson (a4), Margaret Allman-Farinelli (a2) (a3), Ian Darnton-Hill (a2) (a5), Wende Maulaga (a6), John Msuya (a7) and Robyn Alders (a1) (a2) (a3) (a8)...


Animal-source foods (ASF) have the potential to enhance the nutritional adequacy of cereal-based diets in low- and middle-income countries, through the provision of high-quality protein and bioavailable micronutrients. The development of guidelines for including ASF in local diets requires an understanding of the nutrient content of available resources. This article reviews food composition tables (FCT) used in sub-Saharan Africa, examining the spectrum of ASF reported and exploring data sources for each reference. Compositional data are shown to be derived from a small number of existing data sets from analyses conducted largely in high-income nations, often many decades previously. There are limitations in using such values, which represent the products of intensively raised animals of commercial breeds, as a reference in resource-poor settings where indigenous breed livestock are commonly reared in low-input production systems, on mineral-deficient soils and not receiving nutritionally balanced feed. The FCT examined also revealed a lack of data on the full spectrum of ASF, including offal and wild foods, which correspond to local food preferences and represent valuable dietary resources in food-deficient settings. Using poultry products as an example, comparisons are made between compositional data from three high-income nations, and potential implications of differences in the published values for micronutrients of public health significance, including Fe, folate and vitamin A, are discussed. It is important that those working on nutritional interventions and on developing dietary recommendations for resource-poor settings understand the limitations of current food composition data and that opportunities to improve existing resources are more actively explored and supported.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Food composition tables in resource-poor settings: exploring current limitations and opportunities, with a focus on animal-source foods in sub-Saharan Africa
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Food composition tables in resource-poor settings: exploring current limitations and opportunities, with a focus on animal-source foods in sub-Saharan Africa
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Food composition tables in resource-poor settings: exploring current limitations and opportunities, with a focus on animal-source foods in sub-Saharan Africa
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

* Corresponding author: Dr J. de Bruyn, fax +61 2 8627 1605, email


Hide All
1. Black, RE, Victora, CG, Walker, SP, et al. (2013) Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet 382, 427451.
2. Food and Agriculture Organization of the United Nations, International Fund for Agricultural Development & World Food Program (2015) The State of Food Insecurity in the World 2015. Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress . Rome: FAO.
3. Bhutta, ZA & Salam, RA (2012) Global nutrition epidemiology and trends. Ann Nutr Metab 61, Suppl. 1, 1927.
4. Shrimpton, R & Rokx, C (2012) The Double Burden of Malnutrition: A Review of Global Evidence. Health, Nutrition and Population Discussion Paper. Washington, DC: The World Bank.
5. Neumann, C, Harris, DM & Rogers, LM (2002) Contribution of animal source foods in improving diet quality and function in children in the developing world. Nutr Res 22, 193220.
6. Murphy, SP & Allen, LH (2003) Nutritional importance of animal source foods. J Nutr 133, 3932S3935S.
7. Demment, MW, Young, MM & Sensenig, RL (2003) Providing micronutrients through food-based solutions: a key to human and national development. J Nutr 133, 3879S3885S.
8. de Bruyn, J, Wong, J, Bagnol, B, et al. (2015) Family poultry and food and nutrition security. CAB Rev 10, 19.
9. Brown, KH, Creed-Kanashiro, H & Dewey, KG (1995) Optimal complementary feeding practices to prevent childhood malnutrition in developing countries. Food Nutr Bull 16, 320339.
10. Neumann, CG, Murphy, SP, Gewa, C, et al. (2007) Meat supplementation improves growth, cognitive, and behavioural outcomes in Kenyan children. J Nutr 137, 11191123.
11. Black, MM (2003) Micronutrient deficiencies and cognitive functioning. J Nutr 133, 3927S3931S.
12. Allen, LH (2005) Multiple micronutrients in pregnancy and lactation: an overview. Am J Clin Nutr 81, 1206S1212S.
13. Pennington, JAT (2008) Applications of food composition data: data sources and considerations for use. J Food Comp Anal 21, S3S12.
14. Gibson, RS (2005) Principles of Nutritional Assessment, 2nd ed. Oxford: Oxford University Press.
15. Lele, U, Masters, WA, Kinabo, J, et al. (2016) Measuring Food and Nutrition Security: An Independent Technical Assessment and User’s Guide for Existing Indicators. Rome: Food Security Information Network, Measuring Food and Nutrition Security Technical Working Group.
16. Greenfield, H & Southgate, DAT (2003) Food Composition Data: Production, Management and Use. Rome: FAO.
17. Baingana, RK (2004) The need for food composition data in Uganda. J Food Comp Anal 17, 501507.
18. Korkalo, L, Hauta-alus, H & Mutanen, M (2011) Food Composition Tables for Mozambique. Helsinki, Finland: University of Helsinki.
19. Food and Agriculture Organization of the United Nations (2012) West African Food Composition Table. Rome: FAO.
20. Hotz, C, Abdelrahman, L, Sison, C, et al. (2012) A Food Composition Table for Central and Eastern Uganda. Washington, DC: International Food Policy Research Institute and International Center for Tropical Agriculture.
21. Prynne, C & Paul, A (2011) Food Composition Table for Use in The Gambia. Cambridge: Medical Research Council Human Nutrition Research.
22. Lukmanji, Z, Hertzmark, E, Mlingi, N, et al. (2008) Tanzania Food Composition Tables. Dar es Salaam: Muhimbili University of Health and Allied Sciences, Tanzania Food and Nutrition Centre and Harvard School of Public Health.
23. Lephole, M, Khaketla, M & Monoto, M (2006) Lesotho Food Composition Table. Maseru: Department of Agricultural Research.
24. Chitsiku, I (1989) Nutritive value of foods of Zimbabwe. Zambezia 16, 6797.
25. Food and Agriculture Organization of the United Nations & US Department of Health Education and Welfare (1968) Food Composition Table for Use in Africa. Rome: FAO. (accessed April 2016).
26. Food Standards Australia New Zealand. (2001) Meat and Meat Products. A User Guide to Standard 2.2.1 – Meat and Meat Products. Canberra, Australia: Food Standards Australia New Zealand.
27. Food and Agriculture Organization of the United Nations Statistics Division (FAOSTAT) (2015) Food balance: food supply – livestock and fish primary equivalent. (accessed July 2016).
28. Finglas, P, Roe, M, Pinchen, H, et al. (2015) McCance and Widdowson’s: The Composition of Foods Integrated Dataset. Cambridge: The Royal Society of Chemistry.
29. United States Department of Agriculture, Agricultural Research Service (2008) USDA national nutrient database for standard reference, release 28. (accessed April 2016).
30. Food Standards Australia New Zealand (2014) Australian food, supplement and nutrient database 2011–2013. Canberra, Australia: FSANZ. (accessed July 2016).
31. Platt, BS (1962) Tables of Representative Values of Foods Commonly Used in Tropical Countries, Medical Research Council special report series no. 302. London: HM Stationery Office.
32. British Nutrition Foundation (2015) Nutrition requirements. (accessed April 2016).
33. Çabuk, M, Bozkurt, M, Alçiçek, A, et al. (2006) Effect of a herbal essential oil mixture on growth and internal organ weight of broilers from young and old breeder flocks. S Afr J Anim Sci 36, 135141.
34. Rand, WM & Young, VR (1984) Report of a planning conference concerning an international network of food data systems (INFOODS). Am J Clin Nutr 39, 144151.
35. Masese-Mwirigi, L & Waweru, J (2010) Somali Knowledge Attitude and Practices Study: Offal Consumption Among the Somali Population in Boroma, Burao and Bossaso Towns. Mogadishu, Somalia: Food Security and Nutrition Analysis Unit.
36. Hlaing, LM, Fahmida, U, Htet, MK, et al. (2016) Local food-based complementary feeding recommendations developed by the linear programming approach to improve the intake of problem nutrients among 12–23-month-old Myanmar children. Br J Nutr 116, S16S26.
37. Santika, O, Fahmida, U & Ferguson, E (2009) Development of food-based complementary feeding recommendations for 9- to 11-month-old peri-urban Indonesian infants using linear programming. J Nutr 139, 135141.
38. Ross, P, Etkin, N & Muazzamu, I (1996) A changing Hausa diet. Med Anthropol 17, 143163.
39. Smith, G, Clegg, M, Keen, C, et al. (1996) Mineral values of selected plant foods common to Burkina Faso and to Niamey, Niger, West Africa. Int J Food Sci Nutr 47, 4153.
40. Brashares, JS, Golden, CD, Weinbaum, KZ, et al. (2010) Economic and geographic drivers of wildlife consumption in rural Africa. Proc Natl Acad Sci 108, 1393113936.
41. Bennett, EI, Blencowe, E, Brandon, K, et al. (2007) Hunting for consensus: reconciling bushmeat harvest, conservation, and development policy in West and Central Africa. Conserv Biol 21, 884887.
42. Durst, PB & Shono, K (2010) Edible forest insects: exploring new horizons and traditional practices. In Forest Insects as Food: Humans Bite Back. Proceedings of a Workshop on Asia-Pacific Resources and their Potential for Development; 19–21 February 2008; Chiang Mai, Thailand, pp. 14 [PB Durst, DV Johnson, RN Leslie and K Shono, editors]. Bangkok: FAO.
43. Payne, CLR, Scarborough, P, Rayner, M, et al. (2016) Are edible insects more of less ‘healthy’ than commonly consumed meats? A comparison using two nutrient profiling models developed to combat over- and undernutrition. Eur J Clin Nutr 70, 285291.
44. Termote, C, Raneri, J, Deptford, A, et al. (2014) Assessing the potential of wild foods to reduce the cost of a nutritionally adequate diet: an example from eastern Baringo District, Kenya. Food Nutr Bull 35, 458466.
45. Huber, U (2015) Wild Foods in Bundabunda Ward, Zambia: As Assessment of Diversity and Potential Contribution to Food and Nutrition Security, Master of Science One Health (Infectious Diseases) Project Report. London: Royal Veterinary College.
46. International Network on Food Data Systems (INFOODS) (2011) Report of the AFROFOODS sub-regional coordinators meeting and regional workshop on food composition, dietary diversity and food security in Africa, 8–11 September 2011. Abuja: INFOODS.
47. Guan, R, Lyu, F, Chen, X, et al. (2013) Meat quality traits of four Chinese indigenous chicken breeds and one commercial broiler stock. J Zhejiang Univ Sci B 14, 896902.
48. Sirri, F, Castellini, C, Roncarati, A, et al. (2010) Effect of feeding and genotype on the lipid profile of organic chicken meat. Eur J Lipid Sci Technol 112, 9941002.
49. United States Department of Agriculture & Natural Resources Conservation Service (2003) Feed and Animal Management for Poultry, Nutrient Management Technical Note no. 4. USA: United States Department of Agriculture & Natural Resources Conservation Service.
50. Sonaiya, EB (2004) Direct assessment of nutrient resources in free-range and scavenging systems. Worlds Poult Sci J 60, 523535.
51. Havenstein, GB, Ferket, PR & Qureshi, MA (2003) Carcass composition and yield of 1957 versus 2001 broilers when fed representative 1957 and 2001 broiler diets. Poult Sci 82, 15091518.
52. Wang, Y, Lehane, C, Ghebremeskel, K, et al. (2009) Modern organic and broiler chickens sold for human consumption provide more energy from fat than protein. Public Health Nutr 13, 400408.
53. Shaper, AG (1976) Prevention of coronary heart disease. Report of a Joint Working Party of the Royal College of Physicians of London and the British Cardiac Society. J R Coll Physicians Lond 10, 213275.
54. Simopolous, AP (2008) The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med 233, 674688.
55. Hidalgo, A, Rossi, M, Clerici, F, et al. (2008) A market study on the quality characteristics of eggs from different housing systems. Food Chem 106, 10311038.
56. Anderson, KE (2011) Comparison of fatty acid, cholesterol, and vitamin A and E composition in eggs from hens housed in conventional cage and range production facilities. Poult Sci 90, 16001608.
57. Cherian, G, Selvaraj, R, Goeger, M, et al. (2002) Muscle fatty acid composition and thiobarbituric acid-reactive substances of broilers fed different cultivars of sorghum. Poult Sci 81, 14151420.
58. Ahn, D, Kim, S & Shu, H (1997) Effect of egg size and strain and age of hens on the solids content of chicken eggs. Poult Sci 76, 914919.
59. Westenbrink, S, Roe, M, Oseredczuk, M, et al. (2015) EuroFIR quality approach for managing food composition data; where are we in 2014? Food Chem 193, 6974.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed