Skip to main content Accessibility help


  • Access
  • Cited by 16
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Sheng, L. Olsen, S.A. Hu, J. Yue, W. Means, W.J. and Zhu, M.J. 2016. Inhibitory effects of grape seed extract on growth, quorum sensing, and virulence factors of CDC “top-six” non-O157 Shiga toxin producing E. coli. International Journal of Food Microbiology, Vol. 229, Issue. , p. 24.

    Kuchay, Raja A.H 2016. A review of complementary therapies for chemotherapy induced gastrointestinal mucositis. Drug Discoveries & Therapeutics, Vol. 10, Issue. 6, p. 292.

    Xue, Yansong Zhang, Hanying Sun, Xiaofei Zhu, Mei-Jun and Han, Xiaonan 2016. Metformin Improves Ileal Epithelial Barrier Function in Interleukin-10 Deficient Mice. PLOS ONE, Vol. 11, Issue. 12, p. e0168670.

    Bibi, Shima Kang, Yifei Yang, Guan and Zhu, Mei-Jun 2016. Grape seed extract improves small intestinal health through suppressing inflammation and regulating alkaline phosphatase in IL-10-deficient mice. Journal of Functional Foods, Vol. 20, Issue. , p. 245.

    Jin, Xiaolu Wang, Kai Liu, Hongyun Hu, Fuliang Zhao, Fengqi and Liu, Jianxin 2016. Protection of Bovine Mammary Epithelial Cells from Hydrogen Peroxide-Induced Oxidative Cell Damage by Resveratrol. Oxidative Medicine and Cellular Longevity, Vol. 2016, Issue. , p. 1.

    Barnett, M.P.G. and Ferguson, L.R. 2017. Molecular Diagnostics. p. 305.

    Kang, Yifei Xue, Yansong Du, Min and Zhu, Mei-Jun 2017. Preventive effects of Goji berry on dextran-sulfate-sodium-induced colitis in mice. The Journal of Nutritional Biochemistry, Vol. 40, Issue. , p. 70.

    Shen, Tao Duan, Chao Chen, Beidong Li, Meng Ruan, Yang Xu, Danni Shi, Doudou Yu, Dan Li, Jian and Wang, Changtao 2017. Tremella fuciformis polysaccharide suppresses hydrogen peroxide-triggered injury of human skin fibroblasts via upregulation of SIRT1. Molecular Medicine Reports, Vol. 16, Issue. 2, p. 1340.

    El-Salhy, Magdy Umezawa, Kazuo Hatlebakk, Jan Gunnar and Gilja, Odd Helge 2017. Abnormal differentiation of stem cells into enteroendocrine cells in rats with DSS-induced colitis. Molecular Medicine Reports, Vol. 15, Issue. 4, p. 2106.

    Yang, Guan Bibi, Shima Du, Min Suzuki, Takuya and Zhu, Mei-Jun 2017. Regulation of the intestinal tight junction by natural polyphenols: A mechanistic perspective. Critical Reviews in Food Science and Nutrition, Vol. 57, Issue. 18, p. 3830.

    Zhang, Li Carmody, Rachel N. Kalariya, Hetal M. Duran, Rocio M. Moskal, Kristin Poulev, Alexander Kuhn, Peter Tveter, Kevin M. Turnbaugh, Peter J. Raskin, Ilya and Roopchand, Diana E. 2018. Grape proanthocyanidin-induced intestinal bloom of Akkermansia muciniphila is dependent on its baseline abundance and precedes activation of host genes related to metabolic health. The Journal of Nutritional Biochemistry, Vol. 56, Issue. , p. 142.

    Kang, Yifei Yang, Guan Zhang, Shuming Ross, Carolyn F. and Zhu, Mei-Jun 2018. Goji Berry Modulates Gut Microbiota and Alleviates Colitis in IL-10-Deficient Mice. Molecular Nutrition & Food Research, Vol. 62, Issue. 22, p. 1800535.

    Bibi, Shima Du, Min and Zhu, Mei-Jun 2018. Dietary Red Raspberry Reduces Colorectal Inflammation and Carcinogenic Risk in Mice with Dextran Sulfate Sodium–Induced Colitis. The Journal of Nutrition, Vol. 148, Issue. 5, p. 667.

    Zhu, Mei-Jun 2018. Nutritional and Therapeutic Interventions for Diabetes and Metabolic Syndrome. p. 295.

    Zhu, Mei-Jun Sun, Xiaofei and Du, Min 2018. AMPK in regulation of apical junctions and barrier function of intestinal epithelium. Tissue Barriers, Vol. 6, Issue. 2, p. 1.

    Bibi, Shima Navarre, Duroy A. Sun, Xiaofei Du, Min Rasco, Barbara and Zhu, Mei-Jun 2019. Beneficial Effect of Potato Consumption on Gut Microbiota and Intestinal Epithelial Health. American Journal of Potato Research,




      • Send article to Kindle

        To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Favourable effects of grape seed extract on intestinal epithelial differentiation and barrier function in IL10-deficient mice
        Available formats

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Favourable effects of grape seed extract on intestinal epithelial differentiation and barrier function in IL10-deficient mice
        Available formats

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Favourable effects of grape seed extract on intestinal epithelial differentiation and barrier function in IL10-deficient mice
        Available formats
Export citation


The impairment in the rate of cell proliferation and differentiation leads to a negative consequence on the renewal of the intestinal epithelium, which is the aetiological factor of a number of digestive diseases. Grape seed extract (GSE), a rich source of proanthocyanidins, is known for its beneficial health effects. The present study evaluated the beneficial effects of GSE on colonic cell differentiation and barrier function in IL10-deficient mice. Female mice aged 6 weeks were randomised into two groups and given drinking-water containing 0 or 0·1 % GSE (w/v) for 12 weeks. GSE supplementation decreased serum TNF-α level and intestinal permeability, and increased the colonic goblet cell density that was associated with increased mRNA expression of mucin (Muc)-2. Immunohistochemical analyses showed lower accumulation of β-catenin in the crypts of colon tissues of the GSE-supplemented mice, which was associated with a decreased mRNA expression of two downstream effectors of Wingless and Int (Wnt)/catenin signalling, myelocytomatosis oncogene protein (Myc) and cyclin D1 (Ccnd1). Consistently, GSE supplementation decreased the number of colonic proliferating cell nuclear antigen-positive cells, a well-known cell proliferation marker, and a weakened extracellular signal-regulated kinases 1 and 2 (ERK1/2) signalling. In summary, these data indicate that supplementation of 0·1 % GSE for 12 weeks improved gut barrier function and colonic cell differentiation in the IL10-deficient mice probably via inhibiting Wnt/β-catenin pathway.

The gut epithelial integrity and barrier function has been a central predisposing factor in the pathogenesis of inflammatory bowel disease (IBD) and its related gastrointestinal diseases, food allergies, type 1 diabetes and other autoimmune diseases( 1 6 ). Gut epithelium is constantly renewing, which extensively involves epithelial cell proliferation and differentiation. Disruption of this process impairs epithelial barrier function, which underlies many digestive-related diseases. In IBD, such as Crohn's disease and ulcerative colitis, the gastrointestinal tract has been found to be damaged due to extensive mucosal hyperplasia, inflammatory reactions and abnormal expression of MHC class II molecules in the intestinal epithelial cells( 4 ).

Intestinal cell proliferation and differentiation are regulated by various signalling pathways and mediators( 7 ). Bone morphogenetic protein 2 (Bmp2) functions to promote the overall epithelial differentiation; hairy and enhancer of split 1 (Hes1) regulates the differentiation of enterocytes; atonal homolog 1 (Atoh1) is essential for the formation of secretory cells; and Krueppel-like factor 4 (Klf4) is one of the factors important for the development of goblet cells( 7 ). Growth arrest and DNA damage (GADD45) inducible protein levels are elevated under stresses in order to arrest the cell cycle and promote cell survival( 8 ), and proliferating cell nuclear antigen (PCNA) is a commonly used marker of cell proliferation( 9 ). In addition to the above-mentioned pathways and mediators, the Wingless and Int (Wnt) signalling is one of the most fundamental mechanisms driving the proliferation of intestinal epithelial cells, and alters cell fate commitment and tissue homeostasis. The Wnt/β-catenin signalling regulates cell proliferation through mediating the transcription of many target genes including cyclin D1 (Ccnd1) and myelocytomatosis oncogene protein (Myc)( 10 , 11 ). Dysregulation of the Wnt/β-catenin pathway has been implicated in IBD-associated carcinogenesis as well as colorectal cancer( 12 , 13 ). Ccnd1 expression was up-regulated in active ulcerative colitis- and ulcerative colitis- related carcinogenesis( 14 ). The aminosalicylate mesalazine drug exerts chemopreventive effects to IBD through inhibition of the Wnt/β-catenin signalling( 15 ). Polyphenols down-regulate the Wnt/β-catenin signalling in colonic cancer cells( 16 , 17 ); however, relatively less is known about their effects on the proliferation of gut epithelial cells in vivo.

Grape seed extract (GSE) is a heterogeneous mixture of polyphenols (anthocyanidins, catechins and their derivatives) extracted from grape seed and skin. A body of evidence has shown that GSE has anti-inflammatory, antioxidant, cardioprotective, hepatoprotective, neuroprotective, anti-diabetic, anti-carcinogenic and anti-ageing effects( 18 26 ). Our previous study using 1 % (w/w) GSE supplementation attenuated intestinal inflammation and ameliorated the colitis symptom in IL10-deficient mice( 27 ). In a different study, 0·5 % (w/w) GSE supplementation has been shown to reduce the cell proliferation rate in the small intestine of the APC knockout mice( 28 ). In addition, 0·1 % GSE supplementation has been shown to increase the intestinal occludin content and reduce the faecal neutrophil protein calprotectin level in mice fed with a high-fat diet( 29 ). IL10-deficient mice develop spontaneous enterocolitis similar to human Crohn's disease( 30 ), and have been widely used to study the mucosal structure damage and barrier function impairment( 31 , 32 ). Using this mouse model, the objective of the present study was to test whether a lower dose (0·1 % GSE) compared with that of our previous study (1 % GSE) has beneficial effects, and to further explore the mechanistic changes linking GSE to improved gut epithelial function.

Materials and methods

Grape seed extract

The GSE product (Gravinol-S™) was purchased from OptiPure Chemco Industries, Inc. As per the company product specification sheet, the GSE product contains a minimum of 95 % flavonols, of which 82 % are oligomeric proanthocyanidins and 12 % being the highly active monomeric proanthocyanidins.

Animal care and experimental design

All animal procedures were approved by the Washington State University Animal Care and Use Committee. The homozygous IL10-deficient mice (B6.129P2-Il10 tm1Cgn/J) were purchased from The Jackson Laboratory and were bred in the Experimental Animal Laboratory Unit at the Washington State University. Mice were housed in a temperature-controlled room with a 12 h light–12 h dark cycle, and had free access to food (2018 Teklad Global 18 % Protein Rodent Diet) and drinking-water. Female mice aged 6 weeks were randomised into two groups (n 10 per group) and were given drinking-water containing 0 or 0·1 % GSE (w/v) for 12 weeks( 29 ). Wild-type mice were not included in this study, because our previous study has shown that GSE supplementation has little effect on the wild-type mice( 27 ). To avoid potential confounding effects of sex, only female mice were used in the present study. Water was changed on a daily basis to avoid the possible oxidation of functional compounds in GSE. During the feeding trial, mice were housed individually for the measurement of feed intake and water consumption. There was no difference in the amount of water drunk per mouse between treatment groups (3·5–4 ml/mouse per d). This equates to 140–160 mg/kg per d for an adult mouse (approximately 25 g), which converts to 680–780 mg of polyphenols for a 60 kg human as per the published formula( 33 ). This indicates that the GSE concentration used in the present study was also the equivalent of the consumption of 180–205 ml of red wine (3·8 g/l total polyphenols)( 34 ) per d for a 60 kg adult.

In vivo intestinal permeability

At the 10th week of the feeding trial, in vivo intestinal permeability was measured as per the published method( 35 ). Briefly, mice that had been fasted for 6 h were administered with fluorescein isothiocyanate-dextran (500 mg/kg body weight; Sigma-Aldrich). After 1 h of administration, blood sample was collected from the orbital sinus and centrifuged at 12 000 g for 5 min at 4°C. The resulting serum was diluted 1:3 with PBS (pH 7·4), and the fluorescence intensity was measured using the Synergy H1 Hybrid Multi-Mode Microplate Reader (BioTek Instruments) at an excitation wavelength of 485 nm and an emission wavelength of 535 nm.

Faecal total antioxidant capacity assay and serum TNF-α measurement

Faecal samples from the 11th week of the feeding trial were powdered in liquid N2 and then homogenised in 80 % methanol solution. Scavenging activities of the faecal homogenate against the stable free radical 2, 2-diphenyl-1-picrylhydrazyl (DPPH; Sigma-Aldrich) were assayed according to the published methods( 36 , 37 ) with modification. Briefly, 50 μl of diluted faecal samples or 80 % (v/v) methanol (Blank) were mixed with 150 μl of 60 μm-DPPH solution. The absorbance at 517 nm was monitored during a 2 h incubation period using the Synergy H1 Hybrid Microplate Reader (BioTek Instruments). All experiments were performed in triplicate, and the percentage of decrease in DPPH reading was calculated using the following equation:

$$\begin{eqnarray} \%\,of\,inhibition = (1 - OD_{sample}/OD_{blank})\times 100, \end{eqnarray}$$

where ODsample and ODblank indicate the absorbance of faecal sample and methanol blank at a wavelength of 517 nm, respectively.

The serum collected at necropsy (at the end of the 12th week of the feeding trial) was used for analysing the level of TNF-α using the mouse TNF-α instant ELISA kit (eBiosciences) according to the manufacturer's protocol.

Tissue collection

On the day of necropsy, mice were anaesthetised intraperitoneally with tribromoethanol (250 mg/kg body weight), followed by cervical dislocation. The colon section was dissected. A 5 mm segment of colon was fixed in freshly prepared 4 % (w/v) paraformaldehyde (pH 7·0), processed and embedded in paraffin. The remaining colon tissue was cut opened longitudinally, rinsed in PBS, frozen in liquid N2 and stored at − 80°C for further biochemical analyses.

Histological examination

For pathobiological examination, paraffin-embedded colonic gut tissues were sectioned at 5 μm thickness and subjected to haematoxylin–eosin staining. Each colonic section was scored in a blinded fashion following a method published previously( 38 ), with some modifications. Briefly, the severity of epithelial hyperplasia (scored from 0 to 3), the intensity and severity of inflammation (scored as 0–4), and the extent of mucosal hyperplasia (scored as 0–4) and extent of inflammation (scored as 0–4) were scored individually. The summation of these scores provided a total colonic inflammatory score ranging from 0 to a maximum of 15 per colonic section, with 0 being a normal tissue and 15 being the most extensive/severe disease symptoms.

For goblet cell staining, paraffin-embedded colonic tissues were sectioned at 5 μm thickness, deparaffinised and hydrated, and then stained with Alcian blue (pH 2·5)( 39 ), which stains goblet cells blue. Colonic tissue sections (five fields per section, 3–4 sections per animal, n 8) were randomly selected for the quantification of goblet cell:total area ratio using the Image J 1.30v software (split colour channels; National Institute of Health).

Immunohistochemical staining

Immunohistochemical staining was conducted as described previously( 9 , 40 ). Briefly, colonic tissue sections were deparaffinised and hydrated, followed by antigen retrieval before incubation with anti-PCNA (Santa Cruz Biotech, Inc.), anti-β-catenin (Cell Signaling Technology) or anti-phosphorylated (phos)-β-cateninSer552 (Cell Signaling Technology) antibody. Signal was visualised using the Vectastain ABC and DAB kits (Vector Laboratories). After counterstaining with haematoxylin, images were taken using the Leica DM2000 LED light microscope (200 × ; Leica Microsystems, Inc.). The cell proliferation index was expressed as the PCNA-positive cells/total cells in the crypts. Phos-β-cateninSer552 staining was expressed as the phos-β-cateninSer552 positive crypts/100 crypts. β-Catenin staining intensity was scored semi-quantitatively from 0 (normal tissue) to 5 (intensive staining) by a trained examiner in a blinded manner, four sections per animal, eight mice per dietary group.

Quantitative RT-PCR analysis

Total RNA was extracted from powdered large intestine tissues using the TRIzol® Reagent (Sigma-Aldrich), treated with DNase I (Qiagen) and purified with RNeasy Mini kit (Qiagen). Complementary DNA was synthesised with the iScript™ complementary DNA synthesis kit (Bio-Rad). SYBR Green Master Mix (Bio-Rad) was used in all PCR. The amplification efficiency was 0·90–0·99. The quantitative RT-PCR conditions were 95°C, 3 min; 35 cycles of 95°C for 10 s, 56°C for 10 s and 72°C for 20 s. At the end of each run, dissociation melt curves were obtained to confirm the purity of PCR products. The PCR products were further confirmed by electrophoresis and sequencing. β-Tubulin (Tubb2a) was used as the housekeeping gene. The primer sequences are listed in Table 1.

Table 1 Primer sequences used in the present study

Atoh1, atonal homolog 1; Bmp2, bone morphogenetic protein 2; Myc, myelocytomatosis oncogene protein; Ccnd1, cyclin D1; Gadd45, growth arrest and DNA damage; Hes1, hairy and enhancer of split 1; Klf4, Krueppel-like factor 4; Muc, mucin; Pcna, proliferating cell nuclear antigen; Tubb2a, β-tubulin.

Immunoblotting analyses

Immunoblotting analyses were conducted as described previously( 40 ). The band density of target protein was normalised to the β-tubulin. Antibodies against phos-AMP-activated protein kinase (phos-AMPK), AMPK, phos-extracellular signal-regulated kinases 1 and 2 (phos-ERK1/2), ERK1/2, β-catenin were purchased from Cell Signaling Technology. Anti-β-tubulin antibody was purchased from Sigma-Aldrich. Horseradish peroxidase-conjugated anti-rabbit and anti-mouse secondary antibodies were purchased from Cell Signaling Technology.

Statistical analysis

Data were analysed as a complete randomised design using General Linear Model of Statistical Analysis System (2000). Data are presented as means with their standard errors. A significant difference was considered as P< 0·05.


Effect of dietary grape seed extract on intestinal permeability, total antioxidant capacity, serum TNF-α level and histological score

There was no difference in the overall feed intake or body weight gain between the two groups after 12 weeks of feeding trial (data not shown). GSE supplementation significantly decreased the in vivo intestinal permeability (Fig. 1(a)). In addition, GSE supplementation increased the faecal total antioxidant capacity (Fig. 1(b)) and reduced the serum TNF-α level (Fig. 1(c)). However, GSE supplementation has no significant effect on the pathological score (data not shown).

Fig. 1 Intestinal permeability, faecal total antioxidant capacity and serum TNF-α level in mice fed a control (CON) or grape seed extract (GSE) supplemented drinking-water. (a) In vivo intestinal permeability measured with permeability tracer fluorescein isothiocyanate (FITC)-labelled dextran; (b) faecal total antioxidant capacity; (c) serum TNF-α level. Values are means (n 8–10), with individual values (a and b), or with standard errors represented by vertical bars (c). **Mean value was significantly different from that for CON group (P< 0·01).

Dietary grape seed extract enhanced colonic goblet cell differentiation

GSE supplementation increased the number of goblet cells (blue stained, Fig. 2(a) and (b)) associated with enhanced mRNA expression of mucin (Muc)-2, a major secretory mucin, and a tendency of increased Muc3, while had no effect on the mRNA expression of Muc1 (Fig. 2(c)). However, interestingly, no differences in the mRNA expression of Bmp2, Hes1, Atoh1 and Klf4 were observed between the control and the GSE groups (data not shown).

Fig. 2 Goblet cell density, mucin (Muc) and differentiation transcription factors mRNA expression in the colon of mice fed a control (CON; ) or grape seed extract (GSE; ) supplemented drinking-water. (a) Representative images of Alcian blue staining of goblet cells, original magnification at 200 × ; (b) quantification of Alcian blue staining; (c) mRNA expression of Muc1, Muc2 and Muc3. Values are means (n 8), with their standard errors represented by vertical bars. *Mean value was significantly different from that for CON group (P< 0·05). †Mean value was marginally significantly different from that for CON group (P< 0·1). A colour version of this figure can be found online at

Grape seed extract supplementation decreased cell proliferation

GSE supplementation reduced the number of PCNA-positive cells per crypt (Fig. 3(a) and (b)) and had a trend to decrease the mRNA expression of pcna in the control group (1·00 (sem 0·19)) compared with the GSE group (0·63 (sem 0·09)) (P <0·10). In agreement, dietary GSE significantly down-regulated mitogen-activated protein kinases/ERK growth signalling as indicated by reduced phos-ERK1/2/ERK1/2 level in the colonic tissues of GSE compared with that in control mice (Fig.3(c)). Additionally, GSE supplementation decreased the mRNA expression of Gadd45a (P< 0·05) and had a tendency to decrease Gadd45b (P< 0·1) (Fig. 3(d)).

Fig. 3 Colonic cell proliferation in the colon of mice fed a control (CON; ) or grape seed extract (GSE; ) supplemented drinking-water. (a) Representative images of proliferating cell nuclear antigen (PCNA) staining, original magnification at 200 × , dark brown dots indicate PCNA staining signal as pointed by red arrows; (b) ratio of PCNA-positive cells; (c) mitogen-activated protein kinases/extracellular signal-regulated kinases 1 and 2 (ERK1/2) immunoblotting (top: representative western blot images; bottom: quantification data); (d) growth arrest and DNA damage (Gadd45) mRNA expression. Values are means (n 8), with their standard errors represented by vertical bars. Mean value was significantly different from that for CON group: *P< 0·05, **P< 0·01. †Mean value was marginally significantly different from that for CON group (P< 0·1). A colour version of this figure can be found online at

Dietary grape seed extract diminished Wingless and Int/β-catenin and AMP-activated protein kinase signalling

In line with the decreased epithelial cell proliferation, GSE supplementation reduced the β-catenin protein content (Fig. 4(a)), nuclear accumulation of β-catenin (Fig. 4(b) and (c)) and phos-β-cateninSer552 (Fig. 5). Consistently, β-catenin signalling target molecules, the mRNA expression of Ccnd1 and Myc, were decreased by dietary GSE supplementation (Fig. 6(a)). In agreement with decreased nuclear accumulation of phos-β-cateninSer552, the AMPK activity was reduced in the GSE-supplemented mice (Fig. 6(b)).

Fig. 4 Wingless and Int (Wnt)/β-catenin signalling in the colon of mice fed a control (CON) or grape seed extract (GSE) supplemented drinking-water. (a) Immunoblotting of β-catenin; (b) β-catenin immunohistochemical staining; (c) representative image of β-catenin staining, original magnification at 200 × . Values are means with their standard errors represented by vertical bars (n 8). *Mean value was significantly different from that for CON group (P< 0·05). A colour version of this figure can be found online at

Fig. 5 Immunohistochemical staining of phosphorylated (phos)-β-cateninSer552 in the colon of mice fed a control (CON) or grape seed extract (GSE) supplemented drinking-water. (a) Quantification data; (b) representative images, original magnification at 200 × . Values are means with their standard errors represented by vertical bars (n 8). *Mean value was significantly different from that for CON group (P< 0·05). Yellow arrows point to the phos-β-cateninSer552-positive cells. A colour version of this figure can be found online at

Fig. 6 AMP-activated protein kinase (AMPK) signalling, cyclin D1 (Ccnd1) and myelocytomatosis oncogene protein (Myc) mRNA expression in the colon of mice fed a control (CON; ) or grape seed extract (GSE; ) supplemented drinking-water. (a) mRNA expression of Ccnd1 and c-Myc (b) Immunoblotting of AMPK. Values are means with their standard errors represented by vertical bars (n 8). *Mean value was significantly different from that for CON group (P< 0·05).


GSE is an extract of polyphenols, mainly catechins, proanthocyanidins and their derivatives. Accumulating evidence points to the beneficial role of GSE in intestinal inflammation and IBD, primarily mediated by proanthocyanidins( 23 , 41 , 42 ). Our previous study has found that dietary 1 % GSE supplementation reduces disease indices of IBD( 27 ). Intragastrical administration of GSE at a dose of 400 mg/kg reduced the qualitative histological severity score in the proximal colon of dextran sulphate sodium-induced colitis in rats( 23 ). In the present study, we tested the effectiveness of a lower dose (0·1 %) of GSE supplementation on gut inflammation, and found that GSE supplementation decreased the serum TNF-α level and increased the total antioxidant activity, which are consistent with our previous study( 27 ). However, no significant differences in the pathological scores were observed between mice with/without 12 weeks of 0·1 % GSE supplementation, indicating that this low dose of GSE supplementation was insufficient to improve the gut pathological changes in the IL10-deficient mice.

A balanced rate of cell proliferation and cell differentiation is essential to maintain the intestinal epithelial homeostasis. Hyperproliferation in the intestinal tract has been observed in ulcerative colitis in both human subjects and mice( 43 , 44 ). The present study found that 0·1 % of GSE supplementation reduced the colonic cell proliferation, which was consistent with the previous studies showing that GSE decreased cell proliferation in the intestinal tract of APCmin/+ mice( 28 ) and azoxymethane-induced Fischer 344 Rats( 45 ). Inflammation is known to induce GADD45 expression( 46 ). Along with the decreased serum TNF-α level, GADD45 expression was down-regulated in the GSE-supplemented mice, indicating that the beneficial effects of GSE might be associated with its anti-inflammatory effect.

The goblet cell is one of the four cell lineages that are derived from the intestinal stem cells. Goblet cells secrete mucins and are one of the markers that can be used for studying cell differentiation( 47 ). The depletion of goblet cells in the large intestine is a characterised feature of IBD( 48 , 49 ). In the present study, we found that both goblet cells and Muc2 expression were enhanced in GSE-supplemented mice, indicating that GSE might result in enhanced intestinal cell differentiation, but could exert a protective effect on epithelium due to stimulation of innate immunity, given no difference was found in the expression of factors regulating lineage-specific cell differentiation including Bmp2, Hes1 Atoh1 and Klf4.

Mechanically, Wnt signalling plays a crucial role in cell proliferation and tissue homeostasis( 50 ). Wnt signalling has the highest expression in the early stage of the proliferative compartment and decreases as the cells move upwards into the differentiating area( 51 ), indicating that the Wnt pathway is the dominant force behind the proliferative activity of the intestinal epithelium. In the present study, we found that GSE supplementation decreases the nuclear accumulation of β-catenin, the expression of its target genes and the ERK1/2 signalling( 52 ). These data are in consistent with the previous studies, showing that polyphenol compounds could attenuate aberrantly activated Wnt/β-catenin signalling( 53 ). Polymeric black tea polyphenols inhibit 1,2-dimethylhydrazine-induced colorectal carcinogenesis by inhibiting cell proliferation via the Wnt/β-catenin pathway( 54 ). Furthermore, dietary green tea polyphenol supplementation inhibits the intestinal tumorigenesis in APC knockout mice partly through the down-regulation of β-catenin nuclear expression( 55 ). Recently, green tea polyphenol, (-)-epigallocatechin-3-gallate, has been shown to be toxic to human skin cancer cells by inactivation of β-catenin( 56 ). These data suggested that the inhibition of β-catenin signalling is one of the possible mechanisms underlying the beneficial effects of GSE.

AMPK is a serine/threonine protein kinase that plays an important role in maintaining cellular energy balance. In the present study, AMPK activity was suppressed in the GSE-supplemented mice associated with a decreased phosphorylation of β-catenin at Ser552. This result is in line with our previous study, showing that AMPK phosphorylates β-catenin at Ser552, which stabilises β-catenin( 57 ).

In conclusion, 0·1 % GSE supplementation reduced cell proliferation, enhanced cell differentiation and improved barrier function in IL10-deficient mice probably through inhibiting the Wnt/β-catenin pathway.


The present study was financially supported by the NIHR15HD073864 and Washington State University seed grant to M. J. Z.

The authors' contributions are as follows: G. Y. and M. J. Z. participated in the study design, data acquisition, analysis and interpretation of the data; G. Y., Y. X. and H. Z. conducted the research; G. Y., M. J. Z. and M. D. contributed to the writing and revision of the manuscript.

None of the authors has any conflicts of interest to declare.


1 Zeissig, S, Burgel, N, Gunzel, D, et al. (2007) Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut 56, 6172.
2 Groschwitz, KR & Hogan, SP (2009) Intestinal barrier function: molecular regulation and disease pathogenesis. J Allergy Clin Immunol 124, 320.
3 Yu, LC (2009) The epithelial gatekeeper against food allergy. Pediatr Neonatol 50, 247254.
4 Maloy, KJ & Powrie, F (2011) Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 474, 298306.
5 Scaldaferri, F, Pizzoferrato, M, Gerardi, V, et al. (2012) The gut barrier: new acquisitions and therapeutic approaches. J Clin Gastroenterol 46, S12S17.
6 Vaarala, O (2012) Is the origin of type 1 diabetes in the gut? Immunol Cell Biol 90, 271276.
7 van der Flier, LG & Clevers, H (2009) Stem cells, self-renewal, and differentiation in the intestinal epithelium. Annu Rev Physiol 71, 241260.
8 Mak, SK & Kultz, D (2004) Gadd45 proteins induce G2/M arrest and modulate apoptosis in kidney cells exposed to hyperosmotic stress. J Biol Chem 279, 3907539084.
9 Kubben, FJ, Peeters-Haesevoets, A, Engels, LG, et al. (1994) Proliferating cell nuclear antigen (PCNA): a new marker to study human colonic cell proliferation. Gut 35, 530535.
10 Wang, C, Lisanti, MP & Liao, DJ (2011) Reviewing once more the c-myc and Ras collaboration: converging at the cyclin D1-CDK4 complex and challenging basic concepts of cancer biology. Cell Cycle 10, 5767.
11 Xue, M, Wang, Q, Zhao, J, et al. (2014) Docosahexaenoic acid inhibited the Wnt/β-catenin pathway and suppressed breast cancer cells in vitro and in vivo . J Nutr Biochem 25, 104110.
12 Claessen, MM, Schipper, ME, Oldenburg, B, et al. (2010) WNT-pathway activation in IBD-associated colorectal carcinogenesis: potential biomarkers for colonic surveillance. Cell Oncol 32, 303310.
13 Serafino, A, Moroni, N, Zonfrillo, M, et al. (2014) WNT-pathway components as predictive markers useful for diagnosis, prevention and therapy in inflammatory bowel disease and sporadic colorectal cancer. Oncotarget 5, 978992.
14 Wong, NA, Mayer, NJ, Anderson, CE, et al. (2003) Cyclin D1 and p21 in ulcerative colitis-related inflammation and epithelial neoplasia: a study of aberrant expression and underlying mechanisms. Hum Pathol 34, 580588.
15 Bos, CL, Diks, SH, Hardwick, JC, et al. (2006) Protein phosphatase 2A is required for mesalazine-dependent inhibition of Wnt/β-catenin pathway activity. Carcinogenesis 27, 23712382.
16 Wang, D, Wise, ML, Li, F, et al. (2012) Phytochemicals attenuating aberrant activation of β-catenin in cancer cells. PLOS ONE 7, e50508.
17 Taira, J, Uehara, M, Tsuchida, E, et al. (2014) Inhibition of the β-catenin/Tcf signaling by caffeoylquinic acids in sweet potato leaf through down regulation of the Tcf-4 transcription. J Agric Food Chem 62, 167172.
18 Terra, X, Montagut, G, Bustos, M, et al. (2009) Grape-seed procyanidins prevent low-grade inflammation by modulating cytokine expression in rats fed a high-fat diet. J Nutr Biochem 20, 210218.
19 Vislocky, LM & Fernandez, ML (2010) Biomedical effects of grape products. Nutr Rev 68, 656670.
20 Hogan, S, Canning, C, Sun, S, et al. (2011) Dietary supplementation of grape skin extract improves glycemia and inflammation in diet-induced obese mice fed a Western high fat diet. J Agric Food Chem 59, 30353041.
21 Ohyama, K, Furuta, C, Nogusa, Y, et al. (2011) Catechin-rich grape seed extract supplementation attenuates diet-induced obesity in C57BL/6J mice. Ann Nutr Metab 58, 250258.
22 Wang, YH, Ge, B, Yang, XL, et al. (2011) Proanthocyanidins from grape seeds modulates the nuclear factor-kappa B signal transduction pathways in rats with TNBS-induced recurrent ulcerative colitis. Int Immunopharmacol 11, 16201627.
23 Cheah, KY, Bastian, SE, Acott, TM, et al. (2013) Grape seed extract reduces the severity of selected disease markers in the proximal colon of dextran sulphate sodium-induced colitis in rats. Dig Dis Sci 58, 970977.
24 Oz, HS, Chen, T & de Villiers, WJ (2013) Green tea polyphenols and sulfasalazine have parallel anti-inflammatory properties in colitis models. Front Immunol 4, 132.
25 Wang, B, Yang, G, Liang, X, et al. (2014) Grape seed extract prevents skeletal muscle wasting in interleukin 10 knockout mice. BMC Complement Altern Med 14, 162.
26 Yang, G, Wang, H, Kang, Y, et al. (2014) Grape seed extract improves epithelial structure and suppresses inflammation in ileum of IL-10-deficient mice. Food Funct 5, 25582563.
27 Wang, H, Xue, Y, Zhang, H, et al. (2013) Dietary grape seed extract ameliorates symptoms of inflammatory bowel disease in IL10-deficient mice. Mol Nutr Food Res 57, 22532257.
28 Velmurugan, B, Singh, RP, Kaul, N, et al. (2010) Dietary feeding of grape seed extract prevents intestinal tumorigenesis in APCmin/+ mice. Neoplasia 12, 95102.
29 Goodrich, KM, Fundaro, G, Griffin, LE, et al. (2012) Chronic administration of dietary grape seed extract increases colonic expression of gut tight junction protein occludin and reduces fecal calprotectin: a secondary analysis of healthy Wistar Furth rats. Nutr Res 32, 787794.
30 Kuhn, R, Lohler, J, Rennick, D, et al. (1993) Interleukin-10-deficient mice develop chronic enterocolitis. Cell 75, 263274.
31 Zhou, P, Streutker, C, Borojevic, R, et al. (2004) IL-10 modulates intestinal damage and epithelial cell apoptosis in T cell-mediated enteropathy. Am J Physiol Gastrointest Liver Physiol 287, G599G604.
32 Haub, S, Ritze, Y, Bergheim, I, et al. (2010) Enhancement of intestinal inflammation in mice lacking interleukin 10 by deletion of the serotonin reuptake transporter. Neurogastroenterol Motil 22, 826834, e229.
33 Reagan-Shaw, S, Nihal, M & Ahmad, N (2008) Dose translation from animal to human studies revisited. FASEB J 22, 659661.
34 Rifler, JP, Lorcerie, F, Durand, P, et al. (2012) A moderate red wine intake improves blood lipid parameters and erythrocytes membrane fluidity in post myocardial infarct patients. Mol Nutr Food Res 56, 345351.
35 Cani, PD, Bibiloni, R, Knauf, C, et al. (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 14701481.
36 Chrzczanowicz, J, Gawron, A, Zwolinska, A, et al. (2008) Simple method for determining human serum 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging activity – possible application in clinical studies on dietary antioxidants. Clin Chem Lab Med 46, 342349.
37 Magalhaes, LM, Barreiros, L, Maia, MA, et al. (2012) Rapid assessment of endpoint antioxidant capacity of red wines through microchemical methods using a kinetic matching approach. Talanta 97, 473483.
38 Burich, A, Hershberg, R, Waggie, K, et al. (2001) Helicobacter-induced inflammatory bowel disease in IL-10- and T cell-deficient mice. Am J Physiol Gastrointest Liver Physiol 281, G764G778.
39 Pellegrinet, L, Rodilla, V, Liu, Z, et al. (2011) Dll1- and dll4-mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology 140, 12301240, e1–e7.
40 Zhu, MJ, Du, M, Hess, BW, et al. (2007) Periconceptional nutrient restriction in the ewe alters MAPK/ERK1/2 and PI3K/Akt growth signaling pathways and vascularity in the placentome. Placenta 28, 11921199.
41 Li, XL, Cai, YQ, Qin, H, et al. (2008) Therapeutic effect and mechanism of proanthocyanidins from grape seeds in rats with TNBS-induced ulcerative colitis. Can J Physiol Pharmacol 86, 841849.
42 Wang, YH, Yang, XL, Wang, L, et al. (2010) Effects of proanthocyanidins from grape seed on treatment of recurrent ulcerative colitis in rats. Can J Physiol Pharmacol 88, 888898.
43 Babyatsky, MW, Rossiter, G & Podolsky, DK (1996) Expression of transforming growth factors alpha and beta in colonic mucosa in inflammatory bowel disease. Gastroenterology 110, 975984.
44 Geier, MS, Smith, CL, Butler, RN, et al. (2009) Small-intestinal manifestations of dextran sulfate sodium consumption in rats and assessment of the effects of Lactobacillus fermentum BR11. Dig Dis Sci 54, 12221228.
45 Velmurugan, B, Singh, RP, Agarwal, R, et al. (2010) Dietary-feeding of grape seed extract prevents azoxymethane-induced colonic aberrant crypt foci formation in fischer 344 rats. Mol Carcinog 49, 641652.
46 Zhang, N, Ahsan, MH, Zhu, L, et al. (2005) NF-kappaB and not the MAPK signaling pathway regulates GADD45beta expression during acute inflammation. J Biol Chem 280, 2140021408.
47 Crosnier, C, Stamataki, D & Lewis, J (2006) Organizing cell renewal in the intestine: stem cells, signals and combinatorial control. Nat Rev Genet 7, 349359.
48 Johansson, ME & Hansson, GC (2013) Mucus and the goblet cell. Dig Dis 31, 305309.
49 Jadert, C, Phillipson, M, Holm, L, et al. (2014) Preventive and therapeutic effects of nitrite supplementation in experimental inflammatory bowel disease. Redox Biol 2, 7381.
50 Logan, CY & Nusse, R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20, 781810.
51 Bertrand, FE, Angus, CW, Partis, WJ, et al. (2012) Developmental pathways in colon cancer: crosstalk between WNT, BMP, Hedgehog and Notch. Cell Cycle 11, 43444351.
52 Ding, Q, Xia, W, Liu, JC, et al. (2005) Erk associates with and primes GSK-3beta for its inactivation resulting in upregulation of beta-catenin. Mol Cell 19, 159170.
53 Dashwood, WM, Orner, GA & Dashwood, RH (2002) Inhibition of beta-catenin/Tcf activity by white tea, green tea, and epigallocatechin-3-gallate (EGCG): minor contribution of H(2)O(2) at physiologically relevant EGCG concentrations. Biochem Biophys Res Commun 296, 584588.
54 Patel, R, Ingle, A & Maru, GB (2008) Polymeric black tea polyphenols inhibit 1,2-dimethylhydrazine induced colorectal carcinogenesis by inhibiting cell proliferation via Wnt/beta-catenin pathway. Toxicol Appl Pharmacol 227, 136146.
55 Hao, X, Sun, Y, Yang, CS, et al. (2007) Inhibition of intestinal tumorigenesis in Apc(min/+) mice by green tea polyphenols (polyphenon E) and individual catechins. Nutr Cancer 59, 6269.
56 Singh, T & Katiyar, SK (2013) Green tea polyphenol, ( − )-epigallocatechin-3-gallate, induces toxicity in human skin cancer cells by targeting beta-catenin signaling. Toxicol Appl Pharmacol 273, 418424.
57 Zhao, J, Yue, W, Zhu, MJ, et al. (2010) AMP-activated protein kinase (AMPK) cross-talks with canonical Wnt signaling via phosphorylation of beta-catenin at Ser 552. Biochem Biophys Res Commun 395, 146151.