Skip to main content Accessibility help
×
Home

Estimation of salt intake by 24 h urinary sodium excretion in a representative sample of Spanish adults

  • Rosa M. Ortega (a1), Ana M. López-Sobaler (a1), Juan M. Ballesteros (a2), Napoleón Pérez-Farinós (a2), Elena Rodríguez-Rodríguez (a1), Aránzazu Aparicio (a1), José M. Perea (a1) and Pedro Andrés (a3)...

Abstract

The present study reports the Na intake of a representative sample of Spanish young and middle-aged adults aged 18–60 years (n 418, 53·1 % women, selected from the capitals of fifteen provinces and the surrounding semi-urban/rural area), measured with a 24 h urinary Na excretion method. To validate the paper collection of 24 h urine, the correlation between fat-free mass determined by electrical bioimpedance (50·8 (sd 11·3) kg) and that determined via urinary creatinine excretion (51·5 (sd 18·8) kg) was calculated (r 0·633, P < 0·001). Urinary Na excretion correlated with systolic and dyastolic blood pressure data (r 0·243 and 0·153, respectively). Assuming that all urinary Na (168·0 (sd 78·6) mmol/d) comes from the diet, Na excretion would correspond with a dietary salt intake of 9·8 (sd 4·6) g/d, and it would mean that 88·2 % of the subjects had salt intakes above the recommended 5 g/d. Logistic regression analysis, adjusted for sex, age and BMI, showed male sex (OR 3·678, 95 % CI 2·336, 5·791) and increasing BMI (OR 1·069, 95 % CI 1·009, 1·132) (P < 0·001) to be associated with excreting >200 mmol/d urinary Na – a consequence of the higher salt intake in men and in participants with higher BMI. The present results help us to know the baseline salt intake in the Spanish young and middle-aged adult population, and can be used as the baseline to design policies to reduce salt consumption.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Estimation of salt intake by 24 h urinary sodium excretion in a representative sample of Spanish adults
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Estimation of salt intake by 24 h urinary sodium excretion in a representative sample of Spanish adults
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Estimation of salt intake by 24 h urinary sodium excretion in a representative sample of Spanish adults
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Professor Rosa M. Ortega, fax +34 91 394 18 10, email rortega@farm.ucm.es

References

Hide All
1Brown, IJ, Tzoulaki, I, Candeias, V, et al. (2009) Salt intakes around the world: implications for public health international. J Epidemiol 38, 791813.
2He, FJ & MacGregor, GA (2009) A comprehensive review on salt and health and current experience of worldwide salt reduction programes. J Hum Hypertens 23, 363384.
3Hoffmann, IS & Cubeddu, LX (2009) Salt and the metabolic syndrome. Nutr Metab Cardiovasc Dis 19, 123128.
4Strazzullo, P, D'Elia, L, Kandala, NB, et al. (2009) Salt intake, stroke and cardiovascular disease: meta-analysis of prospective studies. BMJ 339, b4567.
5Kim, J, Lim, SY & Kim, JH (2008) Nutrient intake risk factors of osteoporosis in postmenopausal women. Asia Pac J Clin Nutr 17, 270275.
6Bibbins-Domingo, K, Chertow, GM, Coxson, PG, et al. (2010) Projected effect of dietary salt reductions on future cardiovascular disease. N Engl J Med 362, 590599.
7World Health Organization (2003) Diet, Nutrition and the Prevention of Chronic Diseases. Joint WHO/FAO Expert Consultation. WHO Technical Report Series no. 916. Geneva: WHO.
8World Health Organization (2007) Reducing Salt Intake in Populations: Report of a WHO Forum and Technical Meeting, 5–7 October 2006, Paris, France. Geneva: WHO.
9Intersalt Cooperative Research Group (1988) Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. Br Med J 297, 319328.
10Myers, MG, Valdivieso, M, Kiss, A, et al. (2009) Comparison of two automated sphygmomanometers for use in the office setting. Blood Press Monit 14, 4547.
11Expert Committee of the Spanish Ministry of Health (1991) Consenso para el control de la hipertension arterial en Espana (Consensus meeting for the control of arterial hypertension in Spain). Sistole 63, 114.
12World Health Organization (1995) Methodology of Nutritional Surveillance. Physical Condition: Use and Interpretation of Anthropometric Data. Joint FAO/UNICEF/WHO Expert Consultation. Technical Report Series no. 854. Geneva: WHO.
13Deurenberg, P, Andreoli, A, Borg, P, et al. (2001) The validity of predicted body fat percent from body mass index and from impedance in samples of five European populations. Eur J Clin Nutr 55, 973979.
14Ng, RH, Altaffer, M, Ito, R, et al. (1985) The Technicon RA-1000 evaluated for measuring sodium, potassium, chloride, and carbon dioxide. Clin Chem 31, 435438.
15Kroll, MH, Chesler, R, Hagengruber, C, et al. (1986) Automated determination of urinary creatinine without sample dilution: theory and practice. Clin Chem 32, 446452.
16López-Sobaler, AM & Quintas, E (2006) Anthropometric survey. In Nutriguía. Manual of Clinical Nutrition in Primary Care, pp. 346352 [Requejo, AM and Ortega, RM, editors]. Madrid: Complutense ed.
17Forbes, GB & Bruining, GJ (1976) Urinary creatinine excretion and lean body mass. Am J Clin Nutr 29, 13591366.
18Ortega, RM, Requejo, AM & López-Sobaler, AM (2006) Activity questionnaire. In Nutriguía. Manual of Clinical Nutrition in Primary Care, p. 468 [Requejo, AM and Ortega, RM, editors]. Madrid: Complutense ed.
19World Health Organization (1985) Energy and Protein Requirements. Joint FAO/WHO/ONU Expert Consultation. Technical Report Series no. 724. Geneva: WHO.
20Ortega, RM, Requejo, AM, Quintas, ME, et al. (1996) Estimated energy balance in female university students: differences with respect to body mass index and concern about body weight. Int J Obes 20, 11271129.
21Institute of Medicine (2005) Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino acids (Macronutrients). Washington, DC: National Academies Press.
22Capita, R & Alonso-Calleja, C (2003) Intake of nutrients associated with an increased risk of cardiovascular disease in a Spanish population. Int J Food Sci Nutr 54, 5775.
23Campillo, JE, Pérez, G, Rodríguez, A, et al. (2002) Vitamins and mineral intake in elderly people form Extremadura. J Nutr Health Aging 6, 5556.
24Schröder, H, Schmelz, E & Marrugat, J (2002) Relationship between diet and blood pressure in a representative Mediterranean population. Eur J Nutr 41, 161167.
25Hunter, D (1998) Biochemical indicators of dietary intake. In Nutritional Epidemiology, pp. 174243 [Willett, W, editor]. Oxford: Oxford University Press.
26Department of Nutrition (2008) Recommended daily intakes of energy and nutrients and nutritional objectives for the Spanish population. In Food Composition. A Basic Tool for Assessing Nutritional Status, pp. 8286 [Ortega, RM, López-Sobaler, AM, Requejo, A and Andrés, P, editors]. Madrid: Complutense ed.
27Stamler, J, Elliott, P, Kesteloot, H, et al. (1996) Inverse relation of dietary protein markers with blood pressure. Findings for 10020 men and women in the INTERSALT Study. INTERSALT Cooperative Research Group. INTERnational study of salt and blood pressure. Circulation 94, 16291634.
28Charlton, KE, Steyn, K, Levitt, NS, et al. (2005) Diet and blood pressure in South Africa: intake of foods containing sodium, potassium, calcium, and magnesium in three ethnic groups. Nutrition 21, 3950.
29Laatikainen, T, Pietinen, P, Valsta, L, et al. (2006) Sodium in the Finnish diet: 20-year trends in urinary sodium excretion among the adult population. Eur J Clin Nutr 60, 965970.
30National Centre for Social Research (2008) An Assessment of Dietary Sodium Levels Among Adults (Aged 19–64) in the UK General Population in 2008, based on Analysis of Dietary Sodium in 24 hour Urine Samples. London: Food Standards Agency.
31Taylor, EN & Curhan, GC (2006) Body size and 24 hour urine composition. Am J Kidney Dis 48, 905915.
32Zhou, BF, Stamler, J, Dennis, B, et al. (2003) INTERMAP Research Group Nutrient intakes of middle-aged men and women in China, Japan, United Kingdom, and United States in the late 1990s: the INTERMAP Study. J Hum Hypertens 17, 623630.
33Cooper, R, Rotimi, C, Ataman, S, et al. (1997) The prevalence of hypertension in seven populations of west African origin. Am J Public Health 87, 160168.
34Cappuccio, FP, Kerry, SM, Micah, FB, et al. (2006) A community programme to reduce salt intake and blood pressure in Ghana. BMC Public Health 6, 1323.
35du Cailar, G, Mimran, A, Fesler, P, et al. (2004) Dietary sodium and pulse pressure in normotensive and essential hypertensive subjects. J Hypertens 22, 697703.
36Liu, L, Liu, L, Ding, Y, et al. (2001) Ethnic and environmental differences in various markers of dietary intake and blood pressure among Chinese Han and three other minority peoples of China: results from the WHO Cardiovascular Diseases and Alimentary Comparison (CARDIAC) Study. Hypertens Res Clin Exp 24, 315322.
37Tanaka, T, Okamura, T, Miura, K, et al. (2002) A simple method to estimate populational 24 h urinary sodium and potassium excretion using a casual urine specimen. J Hum Hypertens 16, 97103.
38Ayus, JC & Arieff, AI (1996) Abnormalities of water metabolism in the elderly. Semin Nephrol 16, 277288.
39Soiza, RL, Graeme, E & Chua, M (2008) Electrolyte and salt disturbances in older people: causes, management and implications. Rev Clin Gerontol 18, 143158.
40Ortega, RM, Requejo, AM, Andrés, P, et al. (1995) Relationship between diet composition and body mass index in a group of Spanish adolescents. Br J Nutr 74, 765773.
41Geller, KS & Dzewaltowski, DA (2009) Longitudinal and cross-sectional influences on youth fruit and vegetable consumption. Nutr Rev 67, 6576.
42Wright, JD, Wang, C-Y, Kennedy-Stephenson, J, et al. (2003) Dietary intake of ten key nutrients for public health. Adv Data Vital Health Stat 334, 14.
43Venezia, A, Barba, G, Russo, O, et al. (2010) Dietary sodium intake in a sample of adult male population in southern Italy: results of the Olivetti Heart Study. Eur J Clin Nutr 64, 518524.
44Strazzullo, P, Barba, G, Cappuccio, FP, et al. (2001) Altered renal sodium handling in men with abdominal adiposity: a link to hypertension. J Hypertens 19, 21572164.
45Strazzullo, P, Barbato, A, Galletti, F, et al. (2006) Abnormalities of renal sodium handling in the metabolic syndrome. Results of the Olivetti Heart Study. J Hypertens 24, 16331639.
46Bellisle, F (2008) Experimental studies of food choices and palatability responses in European subjects exposed to the Umami taste. Asia Pac J Clin Nutr 17, Suppl. 1, 376379.
47Afshar, R, Sanavi, S & Jalali Nadooshan, MR (2009) Urinary sodium and potassium excretion following karate competitions. Iran J Kidney Dis 3, 8688.
48Luft, FC (1998) Salt and hypertension at the close of the millenium. Wien Klin Wochenschr 110, 459466.
49Hooper, L, Bartlett, C, Davey Smith, G, et al. (2003) Reduced dietary salt for prevention of cardiovascular disease. The Cochrane Database of Systematic Reviews 2003, issue 3 CD003656.
50James, WP, Ralph, A & Sanchez-Castillo, CP (1987) The dominance of salt in manufactured food in the sodium intake of affluent societies. Lancet 1, 426429.
51MacGregor, G & de Wardener, HE (2002) Commentary: salt, blood pressure and health. Int J Epidemiol 31, 320327.

Keywords

Estimation of salt intake by 24 h urinary sodium excretion in a representative sample of Spanish adults

  • Rosa M. Ortega (a1), Ana M. López-Sobaler (a1), Juan M. Ballesteros (a2), Napoleón Pérez-Farinós (a2), Elena Rodríguez-Rodríguez (a1), Aránzazu Aparicio (a1), José M. Perea (a1) and Pedro Andrés (a3)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed