Skip to main content Accessibility help
×
Home

Emerging roles of the extracellular calcium-sensing receptor in nutrient sensing: control of taste modulation and intestinal hormone secretion

  • Sarah C. Brennan (a1), Thomas S. Davies (a1), Martin Schepelmann (a1) and Daniela Riccardi (a1)

Abstract

The extracellular Ca-sensing receptor (CaSR) is a sensor for a number of key nutrients within the body, including Ca ions (Ca2+) and l-amino acids. The CaSR is expressed in a number of specialised cells within the gastrointestinal (GI) tract, and much work has been done to examine CaSR's role as a nutrient sensor in this system. This review article examines two emerging roles for the CaSR within the GI tract – as a mediator of kokumi taste modulation in taste cells and as a regulator of dietary hormone release in response to l-amino acids in the intestine.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Emerging roles of the extracellular calcium-sensing receptor in nutrient sensing: control of taste modulation and intestinal hormone secretion
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Emerging roles of the extracellular calcium-sensing receptor in nutrient sensing: control of taste modulation and intestinal hormone secretion
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Emerging roles of the extracellular calcium-sensing receptor in nutrient sensing: control of taste modulation and intestinal hormone secretion
      Available formats
      ×

Copyright

Corresponding author

* Corresponding authors: Dr S. C. Brennan, fax +44 29208 74116, email brennansc@cf.ac.uk; Professor D. Riccardi, fax +44 29208 74116, email riccardi@cf.ac.uk;

References

Hide All
1 Brown, EM, Gamba, G, Riccardi, D, et al. (1993) Cloning and characterization of an extracellular Ca(2+)-sensing receptor from bovine parathyroid. Nature 366, 575580.
2 Brown, EM & MacLeod, RJ (2001) Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 81, 239297.
3 Hofer, AM & Brown, EM (2003) Extracellular calcium sensing and signalling. Nat Rev Mol Cell Biol 4, 530538.
4 Bandyopadhyay, S, Tfelt-Hansen, J & Chattopadhyay, N (2010) Diverse roles of extracellular calcium-sensing receptor in the central nervous system. J Neurosci Res 88, 20732082.
5 Weston, AH, Geraghty, A, Egner, I, et al. (2011) The vascular extracellular calcium-sensing receptor: an update. Acta Physiol (Oxf) 203, 127137.
6 Quinn, SJ, Ye, CP, Diaz, R, et al. (1997) The Ca2+-sensing receptor: a target for polyamines. Am J Physiol 273, 4 Pt 1, C1315C1323.
7 Brown, EM, Butters, R, Katz, C, et al. (1991) Neomycin mimics the effects of high extracellular calcium concentrations on parathyroid function in dispersed bovine parathyroid cells. Endocrinology 128, 30473054.
8 McLarnon, S, Holden, D, Ward, D, et al. (2002) Aminoglycoside antibiotics induce pH-sensitive activation of the calcium-sensing receptor. Biochem Biophys Res Commun 297, 7177.
9 Ward, DT, McLarnon, SJ & Riccardi, D (2002) Aminoglycosides increase intracellular calcium levels and ERK activity in proximal tubular OK cells expressing the extracellular calcium-sensing receptor. J Am Soc Nephrol 13, 14811489.
10 Brown, EM, Katz, C, Butters, R, et al. (1991) Polyarginine, polylysine, and protamine mimic the effects of high extracellular calcium concentrations on dispersed bovine parathyroid cells. J Bone Miner Res 6, 12171225.
11 Quinn, SJ, Kifor, O, Trivedi, S, et al. (1998) Sodium and ionic strength sensing by the calcium receptor. J Biol Chem 273, 1957919586.
12 Quinn, SJ, Bai, M & Brown, EM (2004) pH Sensing by the calcium-sensing receptor. J Biol Chem 279, 3724137249.
13 Conigrave, AD, Quinn, SJ & Brown, EM (2000) l-Amino acid sensing by the extracellular Ca2+-sensing receptor. Proc Natl Acad Sci U S A 97, 48144819.
14 Conigrave, AD & Hampson, DR (2006) Broad-spectrum l-amino acid sensing by class 3 G-protein-coupled receptors. Trends Endocrinol Metab 17, 398407.
15 Wang, M, Yao, Y, Kuang, D, et al. (2006) Activation of family C G-protein-coupled receptors by the tripeptide glutathione. J Biol Chem 281, 88648870.
16 Broadhead, GK, Mun, HC, Avlani, VA, et al. (2011) Allosteric modulation of the calcium-sensing receptor by gamma-glutamyl peptides: inhibition of PTH secretion, suppression of intracellular cAMP levels, and a common mechanism of action with l-amino acids. J Biol Chem 286, 87868797.
17 Chattopadhyay, N, Cheng, I, Rogers, K, et al. (1998) Identification and localization of extracellular Ca(2+)-sensing receptor in rat intestine. Am J Physiol 274, 1 Pt 1, G122G130.
18 Cheng, I, Qureshi, I, Chattopadhyay, N, et al. (1999) Expression of an extracellular calcium-sensing receptor in rat stomach. Gastroenterology 116, 118126.
19 Conigrave, AD & Brown, EM (2006) Taste receptors in the gastrointestinal tract. II. l-Amino acid sensing by calcium-sensing receptors: implications for GI physiology. Am J Physiol Gastrointest Liver Physiol 291, G753G761.
20 Hebert, SC, Cheng, S & Geibel, J (2004) Functions and roles of the extracellular Ca2+-sensing receptor in the gastrointestinal tract. Cell Calcium 35, 239247.
21 Okada, Y, Imendra, KG, Miyazaki, T, et al. (2007) A calcium-receptor agonist induces gustatory neural responses in bullfrogs. Cell Mol Neurobiol 27, 771781.
22 San Gabriel, A, Uneyama, H, Maekawa, T, et al. (2009) The calcium-sensing receptor in taste tissue. Biochem Biophys Res Commun 378, 414418.
23 Bystrova, MF, Romanov, RA, Rogachevskaja, OA, et al. (2010) Functional expression of the extracellular-Ca2+-sensing receptor in mouse taste cells. J Cell Sci 123, Pt 6, 972982.
24 Finger, TE (2005) Cell types and lineages in taste buds. Chem Senses 30, Suppl. 1, i54i55.
25 Chaudhari, N & Roper, SD (2010) The cell biology of taste. J Cell Biol 190, 285296.
26 Yang, R, Tabata, S, Crowley, HH, et al. (2000) Ultrastructural localization of gustducin immunoreactivity in microvilli of type II taste cells in the rat. J Comp Neurol 425, 139151.
27 Dvoryanchikov, G, Sinclair, MS, Perea-Martinez, I, et al. (2009) Inward rectifier channel, ROMK, is localized to the apical tips of glial-like cells in mouse taste buds. J Comp Neurol 517, 114.
28 Wang, WH, Lu, M & Hebert, SC (1996) Cytochrome P-450 metabolites mediate extracellular Ca(2+)-induced inhibition of apical K+ channels in the TAL. Am J Physiol 271, 1 Pt 1, C103C111.
29 Maruyama, Y, Yasuda, R, Kuroda, M, et al. (2012) Kokumi substances, enhancers of basic tastes, induce responses in calcium-sensing receptor expressing taste cells. PLoS One 7, e34489.
30 Rogachevskaja, OA, Churbanov, GD, Bystrova, MF, et al. (2011) Stimulation of the extracellular Ca2+-sensing receptor by denatonium. Biochem Biophys Res Commun 416, 433436.
31 Ohsu, T, Amino, Y, Nagasaki, H, et al. (2010) Involvement of the calcium-sensing receptor in human taste perception. J Biol Chem 285, 10161022.
32 Tordoff, MG (1996) Some basic psychophysics of calcium salt solutions. Chem Senses 21, 417424.
33 Tordoff, MG, Shao, H, Alarcon, LK, et al. (2008) Involvement of T1R3 in calcium–magnesium taste. Physiol Genomics 34, 338348.
34 Tordoff, MG, Reed, DR & Shao, H (2008) Calcium taste preferences: genetic analysis and genome screen of C57BL/6J × PWK/PhJ hybrid mice. Genes Brain Behav 7, 618628.
35 Geibel, JP & Hebert, SC (2009) The functions and roles of the extracellular Ca2+-sensing receptor along the gastrointestinal tract. Annu Rev Physiol 71, 205217.
36 Buchan, AM, Squires, PE, Ring, M, et al. (2001) Mechanism of action of the calcium-sensing receptor in human antral gastrin cells. Gastroenterology 120, 11281139.
37 Liddle, RA, Goldfine, ID, Rosen, MS, et al. (1985) Cholecystokinin bioactivity in human plasma. Molecular forms, responses to feeding, and relationship to gallbladder contraction. J Clin Invest 75, 11441152.
38 Rogers, AC, Hanly, AM, Collins, D, et al. (2012) Review Article: loss of the calcium-sensing receptor in colonic epithelium is a key event in the pathogenesis of colon cancer. Clin Colorectal Cancer 11, 2430.
39 Furuse, M, Chol, YH, Yang, SI, et al. (1991) Enhanced release of cholecystokinin in chickens fed diets high in phenylalanine or tyrosine. Comp Biochem Physiol A 99, 449451.
40 Holtermuller, KH, Herzog, P, Huhn, B, et al. (1980) Regulation of pancreatic and gallbladder function by absorption of intrajejunal phenylalanine in man. Klin Wochenschr 58, 307312.
41 Mathur, R & Manchanda, SK (1991) Ontogeny of phenylalanine (endogenous cholecystokinin) induced modulation of food intake in normal and undernourished rats. Prog Neuropsychopharmacol Biol Psychiatry 15, 405413.
42 Yang, SI, Furuse, M, Sugishita, N, et al. (1990) Effect of phenylalanine on pancreatic amylase secretion in chicks (Gallus domesticus). Comp Biochem Physiol A 97, 531533.
43 Konturek, SJ, Radecki, T, Thor, P, et al. (1973) Release of cholecystokinin by amino acids. Proc Soc Exp Biol Med 143, 305309.
44 Ballinger, AB & Clark, ML (1994) l-Phenylalanine releases cholecystokinin (CCK) and is associated with reduced food intake in humans: evidence for a physiological role of CCK in control of eating. Metabolism 43, 735738.
45 Mangel, AW, Prpic, V, Wong, H, et al. (1995) Phenylalanine-stimulated secretion of cholecystokinin is calcium dependent. Am J Physiol 268, 1 Pt 1, G90G94.
46 Hira, T, Nakajima, S, Eto, Y, et al. (2008) Calcium-sensing receptor mediates phenylalanine-induced cholecystokinin secretion in enteroendocrine STC-1 cells. FEBS J 275, 46204626.
47 Nakajima, S, Hira, T & Hara, H (2012) Calcium-sensing receptor mediates dietary peptide-induced CCK secretion in enteroendocrine STC-1 cells. Mol Nutr Food Res 56, 753760.
48 Liou, AP, Sei, Y, Zhao, X, et al. (2011) The extracellular calcium-sensing receptor is required for cholecystokinin secretion in response to l-phenylalanine in acutely isolated intestinal I cells. Am J Physiol Gastrointest Liver Physiol 300, G538G546.
49 Wang, Y, Chandra, R, Samsa, LA, et al. (2011) Amino acids stimulate cholecystokinin release through the Ca2+-sensing receptor. Am J Physiol Gastrointest Liver Physiol 300, G528G537.
50 Mace, OJ, Schindler, M & Patel, S (2012) The regulation of K- and L-cell activity by GLUT2 and the calcium-sensing receptor CasR in rat small intestine. J Physiol 590, Pt 12, 29172936.
51 Kerstetter, JE, O'Brien, KO & Insogna, KL (1998) Dietary protein affects intestinal calcium absorption. Am J Clin Nutr 68, 859865.
52 Kerstetter, JE, Caseria, DM, Mitnick, ME, et al. (1997) Increased circulating concentrations of parathyroid hormone in healthy, young women consuming a protein-restricted diet. Am J Clin Nutr 66, 11881196.
53 Nelson, G, Chandrashekar, J, Hoon, MA, et al. (2002) An amino-acid taste receptor. Nature 416, 199202.
54 Christiansen, B, Hansen, KB, Wellendorph, P, et al. (2007) Pharmacological characterization of mouse GPRC6A, an l-alpha-amino-acid receptor modulated by divalent cations. Br J Pharmacol 150, 798807.
55 Wellendorph, P, Johansen, LD & Brauner-Osborne, H (2009) Molecular pharmacology of promiscuous seven transmembrane receptors sensing organic nutrients. Mol Pharmacol 76, 453465.
56 Feng, J, Petersen, CD, Coy, DH, et al. (2010) Calcium-sensing receptor is a physiologic multimodal chemosensor regulating gastric G-cell growth and gastrin secretion. Proc Natl Acad Sci U S A 107, 1779117796.
57 Dufner, MM, Kirchhoff, P, Remy, C, et al. (2005) The calcium-sensing receptor acts as a modulator of gastric acid secretion in freshly isolated human gastric glands. Am J Physiol Gastrointest Liver Physiol 289, G1084G1090.
58 Cheng, SX (2012) Calcium-sensing receptor inhibits secretagogue-induced electrolyte secretion by intestine via the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 303, G60G70.
59 Rey, O, Young, SH, Jacamo, R, et al. (2010) Extracellular calcium sensing receptor stimulation in human colonic epithelial cells induces intracellular calcium oscillations and proliferation inhibition. J Cell Physiol 225, 7383.
60 Rey, O, Chang, W, Bikle, D, et al. (2012) Negative cross-talk between calcium-sensing receptor and beta-catenin signaling systems in colonic epithelium. J Biol Chem 287, 11581167.

Keywords

Emerging roles of the extracellular calcium-sensing receptor in nutrient sensing: control of taste modulation and intestinal hormone secretion

  • Sarah C. Brennan (a1), Thomas S. Davies (a1), Martin Schepelmann (a1) and Daniela Riccardi (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed