Skip to main content Accessibility help

Effects of a food-based intervention on markers of micronutrient status among Indian women of low socio-economic status

  • Sarah H. Kehoe (a1), Harsha Chopra (a2), Sirazul A. Sahariah (a2), Dattatray Bhat (a3), Renuka P. Munshi (a4), Falguni Panchal (a4), Stephen Young (a5), Nick Brown (a1), Dnyaneshwar Tarwande (a6), Meera Gandhi (a2), Barrie M. Margetts (a7), Ramesh D. Potdar (a2) and Caroline H. D. Fall (a1)...


Intakes of micronutrient-rich foods are low among Indian women of reproductive age. We investigated whether consumption of a food-based micronutrient-rich snack increased markers of blood micronutrient concentrations when compared with a control snack. Non-pregnant women (n 222) aged 14–35 years living in a Mumbai slum were randomised to receive a treatment snack (containing green leafy vegetables, dried fruit and whole milk powder), or a control snack containing foods of low micronutrient content such as wheat flour, potato and tapioca. The snacks were consumed under observation 6 d per week for 12 weeks, compliance was recorded, and blood was collected at 0 and 12 weeks. Food-frequency data were collected at both time points. Compliance (defined as the proportion of women who consumed ≥ 3 snacks/week) was >85 % in both groups. We assessed the effects of group allocation on 12-week nutrient concentrations using ANCOVA models with respective 0-week concentrations, BMI, compliance, standard of living, fruit and green leafy vegetable consumption and use of synthetic nutrients as covariates. The treatment snack significantly increased β-carotene concentrations (treatment effect: 47·1 nmol/l, 95 % CI 6·5, 87·7). There was no effect of group allocation on concentrations of ferritin, retinol, ascorbate, folate or vitamin B12. The present study shows that locally sourced foods can be made into acceptable snacks that may increase serum β-carotene concentrations among women of reproductive age. However, no increase in circulating concentrations of the other nutrients measured was observed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effects of a food-based intervention on markers of micronutrient status among Indian women of low socio-economic status
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effects of a food-based intervention on markers of micronutrient status among Indian women of low socio-economic status
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effects of a food-based intervention on markers of micronutrient status among Indian women of low socio-economic status
      Available formats


This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (, which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

* Corresponding author: S. H. Kehoe, email


Hide All
1 World Health Organization (2008) Worldwide Prevalence of Anaemia 1993–2005 WHO Global Database on Anaemia. Geneva: WHO.
2 Pathak, P, Kapil, U, Yajnik, CS, et al. (2007) Iron, folate, and vitamin B12 stores among pregnant women in a rural area of Haryana State, India. Food Nutr Bull 28, 435438.
3 Black, RE, Allen, LH, Bhutta, ZA, et al. (2008) Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371, 243260.
4 Torheim, LE, Ferguson, EL, Penrose, K, et al. (2010) Women in resource-poor settings are at risk of inadequate intakes of multiple micronutrients. J Nutr 140, 2051S2058S.
5 Food and Agriculture Organization (2004) Vitamin and Mineral Requirements in Human Nutrition. Joint FAO/WHO Expert Consultation on Human Vitamin and Mineral Requirements, 2 ed. Geneva: World Health Organization.
6 Maillot, M, Darmon, N, Darmon, M, et al. (2007) Nutrient-dense food groups have high energy costs: an econometric approach to nutrient profiling. J Nutr 137, 18151820.
7 International Institute for Population Sciences (2007) National Family Health Survey (NFHS-3) 2005–06 Volume 1. Mumbai: International Institute for Population Sciences.
8 National Institute of Nutrition, Indian Council of Medical Research (2010) Dietary Guidelines for Indians, 2 ed. Hyderabad: National Institute of Nutrition.
9 Yadav, K & Krishnan, A (2008) Changing patterns of diet, physical activity and obesity among urban, rural and slum populations in north India. Obes Rev 9, 400408.
10 Anand, K, Shah, B, Yadav, K, et al. (2007) Are the urban poor vulnerable to non-communicable diseases? A survey of risk factors for non-communicable diseases in urban slums of Faridabad. Natl Med J India 20, 115120.
11 Shivshankaran, D, Gurmurthy, S, Kehoe, SH, et al. (2011) Developing micronutrient-rich snacks for pre-conception and antenatal health: the Mumbai Maternal Nutrition Project. In Combating Micronutrient Deficiencies: Food-based Approaches, pp. 214223 [Thompson, B and Amoroso, L, editors]. Rome: Food and Agriculture Organization of the United Nations.
12 Potdar, RD, Sahariah, SA, Gandhi, M, et al. (2014) Improving women's diet quality preconceptionally and during gestation: effects on birth weight and prevalence of low birth weight – a randomized controlled efficacy trial in India (Mumbai Maternal Nutrition Project). Am J Clin Nutr 100, 12571268.
13 Rao, S, Yajnik, CS, Kanade, A, et al. (2001) Intake of micronutrient-rich foods in rural Indian mothers is associated with the size of their babies at birth: Pune Maternal Nutrition Study. J Nutr 131, 12171224.
14 United Nations Human Settlements Programme (2003) The Challenge of Slums, Global Report on Human Settlements 2003. London: Routledge.
15 Lwanga, SK & Lemeshow, S (1991) Sample Size Determination in Health Studies: A Practical Manual. Geneva: WHO.
16 Basu, S, Sengupta, B & Paladhai, PK (2003) Single megadose vitamin A supplementation of Indian mothers and morbidity in breastfed young infants. Postgrad Med J 79, 397402.
17 Gopalan, C, Sastri, R & Balasubramanian, SC (1989) Nutritive Value of Indian Foods. Hyderabad, India: National Institute of Nutrition.
18 Thurnham, DI, Smith, E & Flora, PS (1988) Concurrent liquid-chromatographic assay of retinol, α-tocopherol, β-carotene, α-carotene, lycopene, and β-cryptoxanthin in plasma, with tocopherol acetate as internal standard. Clin Chem 34, 377381.
19 Siddiqui, FQ, Malik, F & Fazli, FR (1995) Determination of serum retinol by reversed-phase high-performance liquid chromatography. J Chromatogr B Biomed Appl 666, 342346.
20 Vuilleumier, JP & Keck, E (1989) Fluorometric assay of vitamin C in biological materials using a centrifugal analyser with fluorescence attachment. J Micronutrient Anal 5, 2534.
21 Horne, DW & Patterson, D (1988) Lactobacillus casei microbiological assay of folic acid derivatives in 96-well microtiter plates. Clin Chem 34, 23572359.
22 Tamura, T, Freeberg, LE & Cornwell, PE (1990) Inhibition of EDTA of growth of Lactobacillus casei in the folate microbiological assay and its reversal by added manganese or iron. Clin Chem 36, 1993.
23 Kelleher, BP, Walshe, KG, Scott, JM, et al. (1987) Microbiological assay for vitamin B12 with use of a colistin-sulfate-resistant organism. Clin Chem 33, 5254.
24 Kelleher, BP & Broin, SD (1991) Microbiological assay for vitamin B12 performed in 96-well microtitre plates. J Clin Pathol 44, 592595.
25 Woodruff, BA, Blanck, HM, Slutsker, L, et al. (2006) Anaemia, iron status and vitamin A deficiency among adolescent refugees in Kenya and Nepal. Public Health Nutr 9, 2634.
26 Thurnham, DI, McCabe, GP, Northrop-Clewes, CA, et al. (2003) Effects of subclinical infection on plasma retinol concentrations and assessment of prevalence of vitamin A deficiency: meta-analysis. Lancet 362, 20522058.
27 Thurnham, DI, McCabe, LD, Haldar, S, et al. (2010) Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency: a meta-analysis. Am J Clin Nutr 92, 546555.
28 Gill, CI, Haldar, S, Boyd, LA, et al. (2007) Watercress supplementation in diet reduces lymphocyte DNA damage and alters blood antioxidant status in healthy adults. Am J Clin Nutr 85, 504510.
29 Maramag, CC, Ribaya-Mercado, JD, Rayco-Solon, P, et al. (2010) Influence of carotene-rich vegetable meals on the prevalence of anaemia and iron deficiency in Filipino schoolchildren. Eur J Clin Nutr 64, 468474.
30 Chopra, M, O'Neill, ME, Keogh, N, et al. (2000) Influence of increased fruit and vegetable intake on plasma and lipoprotein carotenoids and LDL oxidation in smokers and nonsmokers. Clin Chem 46, 18181829.
31 Paterson, E, Gordon, MH, Niwat, C, et al. (2006) Supplementation with fruit and vegetable soups and beverages increases plasma carotenoid concentrations but does not alter markers of oxidative stress or cardiovascular risk factors. J Nutr 136, 28492855.
32 Haskell, MJ, Jamil, KM, Hassan, F, et al. (2004) Daily consumption of Indian spinach (Basella alba) or sweet potatoes has a positive effect on total-body vitamin A stores in Bangladeshi men. Am J Clin Nutr 80, 705714.
33 Nawiri, MP, Nyambaka, H & Murungi, JI (2013) Sun-dried cowpeas and amaranth leaves recipe improves β-carotene and retinol levels in serum and hemoglobin concentration among preschool children. Eur J Nutr 52, 583589.
34 Jamil, KM, Brown, KH, Jamil, M, et al. (2012) Daily consumption of orange-fleshed sweet potato for 60 days increased plasma β-carotene concentration but did not increase total body vitamin A pool size in Bangladeshi women. J Nutr 142, 18961902.
35 Agte, V, Jahagirdar, M & Chiplonkar, S (2006) GLV supplements increased plasma β-carotene, vitamin C, zinc and hemoglobin in young healthy adults. Eur J Nutr 45, 2936.
36 Ransley, JK, Greenwood, DC, Cade, JE, et al. (2007) Does the school fruit and vegetable scheme improve children's diet? A non-randomised controlled trial. J Epidemiol Community Health 61, 699703.
37 Schagen, S, Blenkinsop, S, Schagen, I, et al. (2005) Evaluation of the School Fruit and Vegetable Pilot Scheme. London: Big Lottery Fund.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed