Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-26T14:34:19.277Z Has data issue: false hasContentIssue false

The effect of provision of the first-limiting amino acid, gastrointestinal microbial activity and the level of nitrogen intake on protein utilization and energy digestibility in rats

Published online by Cambridge University Press:  24 July 2007

B. O. Eggum
Affiliation:
Nationa1 Institute of Animal Science, Animal Physiology and Biochemistry. 25 Rolighedsvej, DK-1958 Copenhagen V, Denmark
R. M. Beames
Affiliation:
Department of Animal Science, University of British Columbia, Vancouver BC, CanadaV6T 2A2
K. E. Bach Knudsen
Affiliation:
Nationa1 Institute of Animal Science, Animal Physiology and Biochemistry. 25 Rolighedsvej, DK-1958 Copenhagen V, Denmark
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The present work with growing rats was undertaken to study the effect of protein quality, gastrointestinal microbial activity and the level of nitrogen intake on protein utilization and energy digestibiiity. The experiment involved a total of thirty-six dietary treatments in a 9 x 4 factorial design, with five rats per treatment. The thirty-six diets resulted from nine protein sources. Each diet was composed of a basal N-free mixture plus minerals and vitamins, with N sources added at the expense of the N-free mixture to provide 15.0 gN/kg dry matter (DM) in the first three protein-addition treatments and 30.0 gN/kg DM in the fourth protein-addition treatment. The nine protein sources were soya-bean meal, casein, wheat gluten, skim-milk powder, meat-and-bone meal, wheat bran, barley, wheat and cooked brown beans (Phaseolus vulgaris). The four formulations for each protein source incorporated the protein unsupplemented at 15.0 gN/kg DM, unsupplemented at 30.0 gN/kg DM, or supplemented at 15.0 gN/kg DM with the estimated first-limiting amino acid or the antibiotic Nebacitin.

2. With all protein sources, the inclusion of the first-limiting amino acid had no effect on either protein or energy digestibility.

3. The microbial activity in the digestive tract affected protein utilization and energy digestibility to a different degree depending primarily on the level and type of dietary fibre. True protein digestibility (TD) of skim-milk powder and brown beans, both rich in easily-fermentable energy, increased from 0.959 to 1.000 and from 0.680 to 0.777 respectively by the addition of Nebacitin. TD of the other protein sources was only marginally affected by the antibiotic treatment. Only with brown beans was the biological value (BV) markedly affected by Nebacitin with an increase from 0.482 to 0.557 by the treatment. Energy digestibility was significantly lower in rats given antibiotic with soya-bean meal, wheat bran, barley, wheat and brown beans.

4. The effect of level of N intake on protein utilization was dependent on both protein quality and the fibre concentration of the diet. Protein sources with high BV were more affected than proteins of lower BV. It was concluded that TD is not always independent of dietary protein concentration.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

Asp, N.-G., Johansson, C.-G., Hallmer, H. & Siljeström, M. (1983). Journal of Agricultural and Food Chemistry 31, 476482.Google Scholar
Association of Official Analytical Chemists (1975). Offcial Methods of Analysis, 11th ed. Washington, DC:Association of Official Analytical Chemists.Google Scholar
Bach Knudsen, K. E. (1982). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 48, 90104.Google Scholar
Bach Knudsen, K. E., Wolstrup, J. & Eggum, B. O. (1982). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 48, 276287.CrossRefGoogle Scholar
Bach Knudsen, K. E., Wolstrup, J. & Eggum, B. O. (1984). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 48, 182193.CrossRefGoogle Scholar
Beames, R. M. & Eggum, B. O. (1981). British Journal of Nutrition 46, 301313.Google Scholar
Bjerring, J. H., Greig, M. & Holm, J. (1975). U.B.C. BMD 10V. Vancouver, British Columbia: Computing Centre of the University of British Columbia, Vancouver.Google Scholar
Bressani, R., Navarrete, D. A., Hernandez, E., Gutierrez, O., Vargas, E. & Elias, L. G. (1982). In CIQ – DGQ 5. Joint Congress Proceedings. pp. 269287. Kiel, Federal Republic Germany: Christian-Albrechts-Universität.Google Scholar
Chalmers, M. I., Grant, I. & White, F. (1976). Publication of the European Association of Animal Production no. 16, p. 159.Google Scholar
Combe, E. & Sacquet, E. (1966). Comptes Rendus Hebdomadaires des Séances de l' Académie des Sciences 262, 685689.Google Scholar
Cummings, J. H. (1981). British Medical Bulletin 37, 6570.Google Scholar
Eggum, B. O. (1973). National Institute of Animal Science Report no. 406, p. 173.Google Scholar
Eggum, B. O. & Beames, R. M. (1983). In Seed Proteins, Biochemistry, Genetics, Nutritive Value. pp. 499531. [Gottschalk, w.and Müller, H. P., editors]. The Hague, Boston/London: Martinus Nijhoff/Dr W.Junk Publishers.Google Scholar
Eggum, B. O., Beames, R. M., Wolstrup, J. & Bach Knudsen, K. E. (1984). British Journal of Nutrition 51, 305314.Google Scholar
Eggum, B. O., Fekadu, M., Wolstrup, J., Sauer, W. C. & Just, A. (1979). Journal of the Science of Food and Agriculture 30, 177184.Google Scholar
Fleming, S. E. & Vose, J. R. (1979). Journal of Nutrition 109, 20672075.CrossRefGoogle Scholar
Gruhn, K. (1976). Archiv für Tierernährung 24, 8589.Google Scholar
Hoover, W. H. & Heitmann, R. N. (1975). Journal of Nutrition 105, 245252.CrossRefGoogle Scholar
Just, A., Sauer, W. C., Bech-Andersen, S., Jorgensen, H. H. & Eggum, B. O. (1980). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 43, 8391.Google Scholar
Mason, V. C. (1978). 3rd World Congress of Animal Feeding, Madrid, p. 197.Google Scholar
Mason, V. C. (1980). In Current Concepts of Digestion and Absorption in Pigs, pp. 112129. [Low, A. G. and Patridge, I. G., editors]. Reading: National institute for research in dairying.Google Scholar
Mason, V. C., Bech-andersen, S. & Rudemo, M. (1980). Zeitschrift für tierphysiologie, tierernährung und futtermittelkunde 48, 241324.CrossRefGoogle Scholar
Mason, V. C., Kragelund, Z. & Eggum, B. O. (1982). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 48, 241252.Google Scholar
Michel, M. C. (1966). Annales de Biologie Animale, Biochimie, Biophysique 6, 3346.CrossRefGoogle Scholar
Milne, M. D. & Asatoor, A. M. (1975). In Peptide Transport in Protein Nutrition, p. 167 [Mathews, D. M., editor]. Amsterdam: Elsevier.Google Scholar
Nyman, M.& Asp, N.-G. (1982). British Journal of Nutrition 47, 357366.Google Scholar
ørskov, E. R. (1982). Protein Nutrition in Ruminants, p. 160. London: Academic press.Google Scholar
Ørskov, E. R., Fraser, C., Mason, V. C. & Manns, S. O. (1970). British Journal of Nutrition 24, 671682.Google Scholar
Ostrowski, H. T. (1975). New Zealand Journal of Agricultural Research 18, 1317.Google Scholar
Pedersen, B. & Eggum, B. O. (1981). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 45, 190200.Google Scholar
Pedersen, B. & Eggum, B. O. (1983). Qualitas Plantarum Plant Food for Human Nutrition 33, 5161.Google Scholar
Raczynski, G., Eggum, B. O. & Chwalibog, A. (1982). Zeitschrift für Tierphysioiogie, Tierernährung und Futtermittelkunde 48, 160167.Google Scholar
Rerat, A. (1978). Journal of Animal Science 46, 18081837.Google Scholar
Rerat, A., Lisoprawski, C., Vaissade, P. & Vaugelade, P. (1979). Bulletin de l' Academie Vetérinaire Français 52, 333346.Google Scholar
Sauer, W. C., Stothers, S. C. & Parker, R. J. (1977). Canadian Journal of Animal Science 57, 775784.Google Scholar
Smulikowska, S., Eggum, B. O. & Wolstrup, J. (1985). Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 53, 225232.Google Scholar
Stoldt, W. (1952). Fette, Seifen, Anstrichmittel 54, 206207.Google Scholar
Tao, R., Belzile, R. J. & Brisson, G. J. (1971). Canadian Journal of Animal Science 51, 705709.Google Scholar
Zebrowska, T. & Buraczewska, S. (1977). 2nd International Symposium on Protein Metabolism and Nutrition, Lelystad, Holland, p. 82.Google Scholar