Skip to main content Accessibility help
×
Home

The effect of long-term calcium supplementation on indices of iron, zinc and magnesium status in lactating Gambian women

  • Liya Yan (a1), Ann Prentice (a1), Bakary Dibba (a1), Landing M. A. Jarjou (a1), Dorothy M. Stirling (a1) and Susan Fairweather-Tait (a2)...

Abstract

The effect of long-term supplementation with CaCO3 on indices of Fe, Zn and Mg status was investigated in a randomized, double-blind intervention study of sixty lactating Gambian women. The supplement contained 1000 mg Ca and was consumed between meals 5 d/week, for 1 year starting 1.5 weeks postpartum. Compliance was 100%. Plasma ferritin concentration, plasma Zn concentration and urinary Mg output were measured before, during and after supplementation at 1.5, 13, 52 and 78 weeks postpartum. No significant differences in mineral status were observed at any time between women in the supplement and placebo group. Analysis of the longitudinal data series showed that plasma ferritin and Mg excretion were characteristic of the indivdiual (P < 0·001). Within individuals, ferritin concentration was higher at 1.5 weeks postpartum than later in lactation (P = 0.002). Plasma Zn concentration was lower at 1.5 weeks postpartum than at other tima (P < 0·001), an effect which disappeared after albumin correction. Low plasma concentrations of ferritin and Zn indicated that the Gambian women were at high risk of Fe and Zn deficiency. Measurements of α1-antichymotrypsin suggested that the results were not confounded by acute-phase responses. The results of the present study indicate that 1000 mg Ca as CaCO3 given between meals does not deleteriously affect plasma ferritin and Zn concentrations or urinary Mg excretion in women who are at risk of Fe and Zn deficiency

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The effect of long-term calcium supplementation on indices of iron, zinc and magnesium status in lactating Gambian women
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The effect of long-term calcium supplementation on indices of iron, zinc and magnesium status in lactating Gambian women
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The effect of long-term calcium supplementation on indices of iron, zinc and magnesium status in lactating Gambian women
      Available formats
      ×

Copyright

References

Hide All
Aggett, P. J. & Favier, A. (1993). Flair Concerted Action No. 10 Status Papers: Zinc. International Journal for Vitamin and Nutrition Research 63, 301307.
Argiratos, V. & Samman, S. (1994). The effect of calcium carbonate and calcium citrate on the absorption of zinc in healthy female subjects. European Journal of Clinical Nutrition 48, 198204.
Calvin, J., Neale, G., Fotherby, K. J. & Price, C. P. (1988). The relative merits of acute phase proteins in the recognition of inflammatory conditions. Annals of clinical Biochemistry 25, 6066.
Cook, J. D., Dassenko, S. A. & Whittaker, P. (1991). Calcium supplementation: effect on iron absorption. American Journal of Clinical Nutrition 53, 106111.
Data Description Inc. (1993). DataDesk 4.1. Ithaca, NY: Data Description Inc.
Dawson-Hughes, B., Seligson, F. H. & Hughes, V. A. (1986). Effects of calcium carbonate and hydroxyapatite on zinc and iron retention in postmenopausal women. American Journal of Clinical Nutrition 44, 8388.
Fairweather-Tait, S. J. (1993). Flair Concerted Action No. 10 Status Papers: Iron. International Journal for Vitamin and Nutrition Research 63, 296301.
Fairweather-Tait, S. J. (1995). Iron-zinc and calcium-Fe interactions in relation to Zn and Fe absorption. Proceedings of the Nutrition Society 54, 465473.
Fairweather-Tait, S. J., Prentice, A., Heumann, K. G., Jarjou, L. M. A., Stirling, D. M., Wharf, S. G. & Turnlund, J. R. (1995). Effect of calcium supplements and stage of lactation on the efficiency of absorption of calcium by lactating women accustomed to low calcium intakes. American Journal of Clinical Nutrition 62, 11881192.
Ferguson, E. L., Gibson, R. S., Thompson, L. U. & Ounpuu, S. (1989). Dietary calcium, phytate, and zinc intakes and the calcium, phytate, and zinc molar ratios of the diets of a selected group of East African children. American Journal of Clinical Nutrition 50, 14501456.
Gossel, T. A. (1991). Calcium supplements. US Pharmacist April issue, 2632.
Hallberg, L., Rossander-Hulthén, L., Brune, M. & Gleerup, A. (1992). Calcium and iron absorption: mechanism of action and nutritional importance. European Journal of Clinical Nutrition 46, 317327.
Heaney, R. P. (1991). Calcium supplements: practical considerations. Osteoporosis International 1, 6571.
Karra, M. V., Kirksey, A., Galal, O., Bassily, N. S., Harrison, G. G. & Jerome, N. W. (1988). Zinc, calcium and magnesium concentrations in milk from American and Egyptian women throughout the first 6 months of lactation. American Journal of Clinical Nutrition 47, 642648.
Krebs, N. F., Redinger, C. J., Hartley, S., Robertson, A. D. & Hambidge, K. M. (1995). Zinc supplementation during lactation: effects on maternal status and milk Zinc concentrations. American Journal of Clinical Nutrition 61, 10301036.
Levenson, D. I. & Bockman, R. S. (1994). A review of calcium preparations. Nutrition Reviews 52, 221232.
Moser, P. B. & Reynolds, R. D. (1983). Dietary zinc intakes and zinc concentrations of plasma, erythrocytes and breast milk in antepartum and postpartum lactating and nonlactating women: a longitudinal study. American Journal of Clinical Nutrition 38, 101108.
NIH Consensus Statement (1994). Optimal calcium intake. Journal of the American Medical Association 272, 19421948.
Prentice, A. (1991). Functional significance of marginal calcium deficiency. In Modern Lifestyles, Lower Energy Intake and Micronutrient Status, pp. 139154 [Peitrzik, K., editor]. London: Springer-Verlag.
Prentice, A. (1994). Maternal calcium requirements during pregnancy and lactation. American Journal of Clinical Nutrition 59S, 477483.
Prentice, A., Jarjou, L. M. A., Cole, T. J., Stirling, D. M., Dibba, B. & Fairweather-Tit, S. (1995). Calcium requirements of lactating Gambian mothers: effects of a calcium supplement on breast-milk calcium concentration, maternal bone mineral content and urinary calcium excretion. American Journal of Clinical Nutrition 65, 5867.
Sokoll, L. J. & Dawson-Hughes, B. (1992). Calcium supplementation and plasma ferritin concentrations in premenopausal women. American Journal of Clinical Nutrition 56, 10451048.
Spencer, H., Kramer, L., Norris, C. & Osis, D. (1984). Effect of calcium and phosphorus on zinc metabolism in man. American Journal of Clinical Nutrition 40, 12131218.
Tsang, W. M., Howell, M. J. & Miller, A. L. (1988). A simple enzymatic method for the measurement of magnesium in serum and urine on a centrifugal analyser. Annals of Clinical Biochemistry 25, 162168.
Wacker, W. E. C. & Vallee, B. L. (1964). Magnesium. In Mineral Metabolism: An Advanced Treatise, pp. 483521 [Comar, C. L. and Bronner, F., editors]. New York: Academic Press.
Whiting, S. (1995). The inhibitory effect of dietary calcium on iron bioavailability: a cause for concern? Nutrition Reviews 53, 7780.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed