Hostname: page-component-7479d7b7d-rvbq7 Total loading time: 0 Render date: 2024-07-11T11:31:15.493Z Has data issue: false hasContentIssue false

Effect of feeding a carbohydrate-free diet on the growth and metabolism of preruminant kids

Published online by Cambridge University Press:  09 March 2007

S. Tanabe
Affiliation:
Department of Nutrition, National Institute of Animal Industry, Chiba-shi 280, Japan
K. Kameoka
Affiliation:
Department of Nutrition, National Institute of Animal Industry, Chiba-shi 280, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Experiments were done using 8-d-old kids to determine the metabolic effect of feeding a carbohydrate-free diet, and the effects of supplementation of this diet with a small amount of glycerol, sodium propionate or glucose.

2. The experimental (carbohydrate-deficient) diets permitted growth nearly equal to that with the control diet (cow's milk). The kids given the experimental diets generally had lower levels of blood glucose than those given the control diet.

3. With all experimental diets there were increases in the concentrations of plasma lipid and total liver lipid and a decrease in the concentration of liver glycogen; supplementation of the carbohydrate-free diet with glycerol, sodium propionate or glucose had no additional effect on these values.

4. The ingestion of cow's milk produced hyperglycaemia 2 h after feeding, while in kids given the carbohydrate-free diet there was no increase in blood glucose level. The concentration of plasma free fatty acids in the kids given the carbohydrate-free diet was higher than that in control animals 24 h after feeding, suggesting that the kids given the experimental diet preferentially utilize free fatty acids as an energy source.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1976

References

Abell, L. L., Levy, B. B., Brodie, B. B. & Kendall, F. E. (1952). J. biol. Chem. 195, 357.CrossRefGoogle Scholar
Alexander, G. (1962). Aust. J. agric. Res. 13, 144.CrossRefGoogle Scholar
Aoyama, Y., Nakanishi, M. & Ashida, K. (1973). J. Nutr. 103, 54.CrossRefGoogle Scholar
Bartlett, G. R. (1958). J. biol. Chem. 234, 466.CrossRefGoogle Scholar
Bergmeyer, H. U. & Bernt, E. (1965). In Methods of Enzymatic Analysis, p. 123 [Bergmeyer, H. U. editor]. New York and London: Academic Press.Google Scholar
Brambila, S. & Hill, F. W. (1966). J. Nutr. 88, 84.CrossRefGoogle Scholar
Brice, E. G. & Okey, R. (1955). J. biol. Chem. 218, 107.CrossRefGoogle Scholar
Carlson, L. A. (1963). J. Atheroscler. Res. 3, 334.CrossRefGoogle Scholar
Conway, E. J. (1957). Microdiffusion Analysis and Volumetric Error, 4th ed. London: Crosby Lockwood & Son Ltd.Google Scholar
Duncombe, W. G. (1963). Biochem. J. 88, 7.CrossRefGoogle Scholar
Folch, J., Lees, M. & Sloane Stanley, G. H. (1957). J. biol. Chem. 226, 497.CrossRefGoogle Scholar
Goldberg, A. (1971). J. Nutr. 101, 693.CrossRefGoogle Scholar
Hassid, W. Z. & Abraham, S. (1957). Meth. Enzym. 3, 34.CrossRefGoogle Scholar
Hill, R., Linazasoro, J. M., Chevalier, F. & Chaikoff, I. L. (1958). J. biol. Chem. 233, 305.CrossRefGoogle Scholar
Itaya, K. & Ui, M. (1965). J. Lipid Res. 6, 16.CrossRefGoogle Scholar
Kameoka, K. & Tanabe, S. (1975). Jap. J. zootech. Sci. 46, 417.Google Scholar
Kushiro, H. & Fukui, I. (1967). Jap. J. clin. Path. 15, 853.Google Scholar
Renner, R. (1964). J. Nutr. 84, 322.CrossRefGoogle Scholar
Renner, R. & Elcombe, A. M. (1967). J. Nutr. 93, 31.CrossRefGoogle Scholar
Seakins, A. & Robinson, D. S. (1964). Biochem. J. 92, 308.CrossRefGoogle Scholar
Walker, D. M. (1967). Br. J. Nutr. 21, 289.CrossRefGoogle Scholar