Skip to main content Accessibility help
×
Home

Effect of Bifidobacterium lactis HN019 on inflammatory markers and oxidative stress in subjects with and without the metabolic syndrome

  • Luciana J. Bernini (a1), Andréa N. Colado Simão (a2) (a3), Cínthia H. B. de Souza (a1), Daniela F. Alfieri (a3), Liliane G. Segura (a1), Giselle N. Costa (a1) and Isaias Dichi (a4)...

Abstract

Beneficial effects of probiotics have been reported on body weight, lipid and carbohydrate metabolism, inflammatory state and oxidative stress in healthy subjects and in many metabolic and inflammatory diseases. The aim of this study was to evaluate the effects of Bifidobacterium lactis HN019 on inflammatory state and nitro-oxidative stress in patients with and without the metabolic syndrome (MetS). The usual diets of the thirty-three subjects were supplemented with probiotic milk for 90 d. Inflammatory markers and oxidative measurements were performed. In relation to the baseline values, subjects in both groups showed a decrease in homocysteine (P=0·02 and P=0·03, respectively), hydroperoxides (P=0·02 and P=0·01, respectively) and IL-6 levels (P=0·02). Increases in adiponectin (P=0·04) and nitric oxide metabolites (NOx, P=0·001) levels were only seen in the group with the MetS in relation to the baseline values, whereas only the individuals without the MetS had increases in total radical-trapping antioxidant parameter levels (P=0·002). In conclusion, B. lactis HN019 have several beneficial effects on inflammatory and oxidative biomarkers in healthy subjects and the MetS patients. Patients with the MetS showed a specific improvement in adiponectin and NOx levels, whereas a specific favourable effect was shown in the antioxidant defenses in healthy subjects. If the results obtained in the present study are confirmed, supplementation of fermented milk with probiotics in healthy subjects and patients with the MetS must be further discussed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Effect of Bifidobacterium lactis HN019 on inflammatory markers and oxidative stress in subjects with and without the metabolic syndrome
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Effect of Bifidobacterium lactis HN019 on inflammatory markers and oxidative stress in subjects with and without the metabolic syndrome
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Effect of Bifidobacterium lactis HN019 on inflammatory markers and oxidative stress in subjects with and without the metabolic syndrome
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: G. N. Costa, fax +55 43 3371 7834, email gcnobre@gmail.com

References

Hide All
1. Grundy, SM, Cleeman, JI, Daniels, SR, et al. (2005) Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 112, 27352752.
2. Lakka, H, De, L, Ta, L, et al. (2002) The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 288, 27092716.
3. Kahn, R, Buse, J, Ferrannini, E, et al. (2005) The metabolic syndrome: time for a critical appraisal: joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care 28, 22892304.
4. Cornier, MA, Dabelea, D, Hernandez, TL, et al. (2008) The metabolic syndrome. Endocr Rev 29, 777822.
5. Erejuwa, OO, Sulaiman, SA & Ab Wahab, MS (2014) Modulation of gut microbiota in the management of metabolic disorders: the prospects and challenges. Int J Mol Sci 15, 41584188.
6. Caricilli, A & Saad, M (2013) The role of gut microbiota on insulin resistance. Nutrients 5, 829851.
7. Shen, J, Obin, MS & Zhao, L (2013) The gut microbiota, obesity and insulin resistance. Mol Aspects Med 34, 3958.
8. Bäckhed, F, Ley, RE, Sonnenburg, JL, et al. (2005) Host-bacterial mutualism in the human intestine. Science 307, 19151920.
9. Forsythe, P, Sudo, N, Dinan, T, et al. (2010) Mood and gut feelings. Brain Behav Immun 24, 916.
10. Jones, RM, Mercante, JW & Neish, AS (2012) Reactive oxygen production induced by the gut microbiota: pharmacotherapeutic implications. Curr Med Chem 19, 15191529.
11. Carding, S, Verbeke, K, Vipond, DT, et al. (2015) Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 26, 26191.
12. Nagpal, R, Kumar, A, Kumar, M, et al. (2012) Probiotics, their health benefits and applications for developing healthier foods: a review. FEMS Microbiol Lett 334, 115.
13. Miglioranza Scavuzzi, B, Miglioranza, LH, Henrique, FC, et al. (2015) The role of probiotics on each component of the metabolic syndrome and other cardiovascular risks. Expert Opin Ther Targets 19, 11271138.
14. Salehi-Abargouei, A, Ghiasvand, R & Hariri, M (2017) Prebiotics, prosynbiotics and synbiotics: can they reduce plasma oxidative stress parameters? A systematic review. Probiotics Antimicrob Proteins 9, 111.
15. Mirmiran, P (2014) Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications: a review. World J Diabetes 5, 267.
16. Bernini, LJ, Simão, ANC, Alfieri, DF, et al. (2016) Beneficial effects of Bifidobacterium lactis on lipid profile and cytokines in patients with metabolic syndrome: a randomized trial. Effects of probiotics on metabolic syndrome. Nutrition 32, 716719.
17. Brasil (2007) Ministério da Agricultura Pecuária e Abastecimento. Instrução Normativa no 46, de 23 de Outubro de 2007. Regulamento Técnico de Identidade e Qualidade de Leites Fermentados. Diário Of da República Fed do Bras Brasília DF, 24 out. 2007. Seção 1, 5 (Technical Regulation on the Identity and Quality of Fermented Milks). http://www.cidasc.sc.gov.br/inspecao/files/2012/08/instru%C3%87%C3%83o-normativa-n%C2%BA-46-de-23-de-outubro-de-2007.pdf
18. Brasil (2001) Ministério da Saúde. Agência Nacional de Vigilância Sanitária - ANVISA Resolução RDC no 12, de 02/01/2001. M. Regulamento Técnico sobre padrões microbiológicos para alimentos. Diário Of da República Fed do Bras Brasília DF, 10 January 2001. Seção 1, 45–53 (Technical Regulation on microbiological standards for food). http://portal.anvisa.gov.br/documents/33880/2568070/RDC_12_2001.pdf/15ffddf6-3767-4527-bfac-740a0400829b
19. Pickering, TG, Hall, JE, Appel, LJ, et al. (2005) Recommendations for blood pressure measurement in humans and experimental animals: part 1: blood pressure measurement in humans: a statement for professionals from the Subcommittee of Professional and Public Education of the American Heart Association Council on High Blood Pressure Research. Circulation 111, 697716.
20. Gonzalez Flecha, B, Llesuy, S & Boveris, A (1991) Hydroperoxide-initiated chemiluminescence: an assay for oxidative stress in biopsies of heart, liver, and muscle. Free Radic Biol Med 10, 93100.
21. Guevara, I, Iwanejko, J, Dembińska-Kieć, A, et al. (1998) Determination of nitrite/nitrate in human biological material by the simple Griess reaction. Clin Chim Acta 274, 177188.
22. Navarro-Gonzálvez, JA, García-Benayas, C & Arenas, J (1998) Semiautomated measurement of nitrate in biological fluids. Clin Chem 44, 679681.
23. Repetto, M, Reides, C & Gomez Carretero, ML (1996) Oxidative stress in blood of HIV infected patients. Clin Chim Acta 255, 107117.
24. Venturini, D, Simão, ANC, Scripes, NA, et al. (2012) Evaluation of oxidative stress in overweight subjects with or without metabolic syndrome. Obesity 20, 23612366.
25. Hu, ML (1994) Measurement of protein thiol groups and glutathione in plasma. Methods Enzymol 233, 380385.
26. IBM Corp. (2013) IBM SPSS Statistics for Windows, Version 22.0. Armonk, NY: IBM Corp.
27. Lu, L, Yu, Y, Guo, Y, et al. (2015) Transcriptional modulation of intestinal innate defense/inflammation genes by preterm infant microbiota in a humanized gnotobiotic mouse model. PLOS ONE 10, e0124504.
28. Eder, K, Baffy, N, Falus, A, et al. (2009) The major inflammatory mediator interleukin-6 and obesity. Inflamm Res 58, 727736.
29. Scheller, J, Chalaris, A, Schmidt-Arras, D, et al. (2011) The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 1813, 878888.
30. Barreto, FM, Colado Simão, AN, Morimoto, HK, et al. (2014) Beneficial effects of Lactobacillus plantarum on glycemia and homocysteine levels in postmenopausal women with metabolic syndrome. Nutrition 30, 939942.
31. Cani, PD, Neyrinck, AM, Fava, F, et al. (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50, 23742383.
32. Ejtahed, HS, Mohtadi-Nia, J, Homayouni-Rad, A, et al. (2012) Probiotic yogurt improves antioxidant status in type 2 diabetic patients. Nutrition 28, 539543.
33. Hariri, M, Salehi, R, Feizi, A, et al. (2015) The effect of probiotic soy milk and soy milk on anthropometric measures and blood pressure in patients with type II diabetes mellitus: a randomized double-blind clinical trial. ARYA Atheroscler 11, 18.
34. Kang, YM, Lee, BJ, , Kim J I, et al. (2012) Antioxidant effects of fermented sea tangle (Laminaria japonica) by Lactobacillus brevis BJ20 in individuals with high level of γ-GT: a randomized, double-blind, and placebo-controlled clinical study. Food Chem Toxicol 50, 11661169.
35. Valentini, L, Pinto, A, Bourdel-Marchasson, I, et al. (2015) Impact of personalized diet and probiotic supplementation on inflammation, nutritional parameters and intestinal microbiota – the ‘RISTOMED project’: randomized controlled trial in healthy older people. Clin Nutr 34, 593602.
36. Tonucci, LB, Olbrich dos Santos, KM, Licursi de Oliveira, L, et al. (2017) Clinical application of probiotics in type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled study. Clin Nutr 36, 8592.
37. Asemi, Z, Zare, Z, Shakeri, H, et al. (2013) Effect of multispecies probiotic supplements on metabolic profiles, hs-CRP, and oxidative stress in patients with type 2 diabetes. Ann Nutr Metab 63, 19.
38. Fruchart, J-C (2004) New risk factors for atherosclerosis and patient risk assessment. Circulation 109, Suppl. 23, III-15–III-19.
39. Homocysteine Studies Collaboration (2002) Homocysteine and risk of ischemic heart disease and stroke: a meta-analysis. JAMA 288, 20152022.
40. Selhub, J (2006) The many facets of hyperhomocysteinemia: studies from the Framingham cohorts. J Nutr 136, 17261730.
41. Sybesma, W, Starrenburg, M, Tijsseling, L, et al. (2003) Effects of cultivation conditions on folate production by lactic acid bacteria. Appl Environ Microbiol 69, 45424548.
42. Konstantinova, SV, Vollset, SE, Berstad, P, et al. (2007) Dietary predictors of plasma total homocysteine in the hordaland homocysteine study. Br J Nutr 98, 201210.
43. Deguchi, Y, Morishita, T & Mutai, M (1985) Comparative studies on synthesis of water-soluble vitamins among human species of bifidobacteria. Agric Biol Chem 49, 1319.
44. Camilo, E, Zimmerman, J, Mason, JB, et al. (1996) Folate synthesized by bacteria in the human upper small intestine is assimilated by the host. Gastroenterology 110, 991998.
45. D’Aimmo, MR, Mattarelli, P, Biavati, B, et al. (2012) The potential of bifidobacteria as a source of natural folate. J Appl Microbiol 112, 975984.
46. Mohammad, MA, Molloy, A, Scott, J, Hussein, L, et al. (2006) Plasma cobalamin and folate and their metabolic markers methylmalonic acid and total homocysteine among Egyptian children before and after nutritional supplementation with the probiotic bacteria Lactobacillus acidophilus in yoghurt matrix. Int J Food Sci Nutr 57, 470480.
47. Tyagi, N (2005) Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol 289, H2649H2656.
48. Dominguez, LJ, Galioto, A, Pineo, A, et al. (2010) Age, homocysteine, and oxidative stress: relation to hypertension and type 2 diabetes mellitus. J Am Coll Nutr 29, 16.
49. Ouchi, N, Kihara, S, Arita, Y, et al. (2000) Adiponectin, an adipocyte-derived plasma protein, inhibits endothelial NF-kappaB signaling through a cAMP-dependent pathway. Circulation 102, 12961301.
50. Hotta, K, Funahashi, T, Bodkin, NL, et al. (2001) Circulating concentrations of the adipocyte protein adponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 50, 11261133.
51. Santaniemi, M, Kesäniemi, YA & Ukkola, O (2006) Low plasma adiponectin concentration is an indicator of the metabolic syndrome. Eur J Endocrinol 155, 745750.
52. Simão, ANC, Lozovoy, MAB, Simão, TNC, et al. (2012) Adiponectinemia is associated with uricemia but not with proinflammatory status in women with metabolic syndrome. J Nutr Metab 2012, 418094.
53. Kim, SW, Park, KY, Kim, B, et al. (2013) Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production. Biochem Biophys Res Commun 431, 258263.
54. Kadooka, Y, Sato, M, Imaizumi, K, et al. (2010) Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 64, 636643.
55. Nakamura, YK & Omaye, ST (2012) Metabolic diseases and pro- and prebiotics: mechanistic insights. Nutr Metab 9, 60.
56. Sun, Y, Hu, S, XH, Z, et al. (2006) Plasma levels of vWF and NO in patients with metabolic syndrome and their relationship with metabolic disorders. Zhejiang Da Xue Xue Bao Yi Xue Ban 35, 315318.
57. Zahedi Asl, S, Ghasemi, A & Azizi, F (2008) Serum nitric oxide metabolites in subjects with metabolic syndrome. Clin Biochem 41, 13421347.
58. Simão, ANC, Lozovoy, MAB, Simão, TNC, et al. (2011) Immunological and biochemical parameters of patients with metabolic syndrome and the participation of oxidative and nitroactive stress. Braz J Med Biol Res 44, 707712.
59. Tao, L, Gao, E, Jiao, X, et al. (2007) Adiponectin cardioprotection after myocardial ischemia/reperfusion involves the reduction of oxidative/nitrative stress. Circulation 115, 14081416.
60. Rashid, SK, Khodja, NI, Auger, C, et al. (2014) Probiotics (VSL#3) prevent endothelial dysfunction in rats with portal hypertension: role of the angiotensin system. PLOS ONE 9, e97458.
61. Maciel, FR, Punaro, GR, Rodrigues, AM, et al. (2016) Immunomodulation and nitric oxide restoration by a probiotic and its activity in gut and peritoneal macrophages in diabetic rats. Clin Nutr 35, 10661072.
62. Esposito, E, Iacono, A, Bianco, G et al. (2009) Probiotics reduce the inflammatory response induced by a high-fat diet in the liver of young rats. J Nutr 139, 905911.
63. Goldstein, BJ & Scalia, R (2004) Adiponectin: a novel adipokine linking adipocytes and vascular function. J Clin Endocrinol Metab 89, 25632568.
64. Zhu, W, Cheng, KKY, Vanhoutte, PM, et al. (2008) Vascular effects of adiponectin: molecular mechanisms and potential therapeutic intervention. Clin Sci 114, 361374.
65. Tan, KCB, Xu, A, Chow, WS, et al. (2004) Hypoadiponectinemia is associated with impaired endothelium-dependent vasodilation. J Clin Endocrinol Metab 89, 765769.
66. Li, R, Wang, W-Q, Zhang, H, et al. (2007) Adiponectin improves endothelial function in hyperlipidemic rats by reducing oxidative/nitrative stress and differential regulation of eNOS/iNOS activity. Am J Physiol Endocrinol Metab 293, E1703E1708.
67. Ohashi, K, Kihara, S, Ouchi, N, et al. (2006) Adiponectin replenishment ameliorates obesity-related hypertension. Hypertension 47, 11081116.
68. Ziemke, F & Mantzoros, CS (2010) Adiponectin in insulin resistance: lessons from translational research. Am J Clin Nutr 91, 258261.
69. Simão, ANC, Lozovoy, MAB, Bahls, LD, et al. (2012) Blood pressure decrease with ingestion of a soya product (kinako) or fish oil in women with the metabolic syndrome: role of adiponectin and nitric oxide. Br J Nutr 108, 14351442.
70. Kullisaar, T, Songisepp, E, Mikelsaar, M, et al. (2003) Antioxidative probiotic fermented goats’ milk decreases oxidative stress-mediated atherogenicity in human subjects. Br J Nutr 90, 449.
71. Songisepp, E, Kals, J, Kullisaar, T, et al. (2005) Evaluation of the functional efficacy of an antioxidative probiotic in healthy volunteers. Nutr J 4, 22.
72. Asemi, Z, Jazayeri, S, Najafi, M, et al. (2012) Effect of daily consumption of probiotic yogurt on oxidative stress in pregnant women: a randomized controlled clinical trial. Ann Nutr Metab 60, 6268.
73. Chrysohoou, C, Panagiotakos, DB, Pitsavos, C, et al. (2007) The implication of obesity on total antioxidant capacity in apparently healthy men and women: the ATTICA study. Nutr Metab Cardiovasc Dis 17, 590597.

Keywords

Effect of Bifidobacterium lactis HN019 on inflammatory markers and oxidative stress in subjects with and without the metabolic syndrome

  • Luciana J. Bernini (a1), Andréa N. Colado Simão (a2) (a3), Cínthia H. B. de Souza (a1), Daniela F. Alfieri (a3), Liliane G. Segura (a1), Giselle N. Costa (a1) and Isaias Dichi (a4)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed