Skip to main content Accessibility help

Disodium ascorbyl phytostanol phosphate (FM-VP4), a modified phytostanol, is a highly active hypocholesterolaemic agent that affects the enterohepatic circulation of both cholesterol and bile acids in mice

  • J. Méndez-González (a1) (a2), S. Süren-Castillo (a1) (a3), L. Calpe-Berdiel (a1) (a4), N. Rotllan (a1) (a5), M. Vázquez-Carrera (a5) (a6), J. C. Escolà-Gil (a1) (a5) and F. Blanco-Vaca (a1) (a2) (a5)...


Disodium ascorbyl phytostanol phosphate (FM-VP4) is a synthetic compound derived from sitostanol and campestanol that has proved to be efficient as a cholesterol-lowering therapy in mice and human subjects. However, the mechanism of action of FM-VP4 remains unknown. The present study tests the ability of FM-VP4 to alter intestinal and liver cholesterol homeostasis in mice. Female C57BL/6J mice were fed either a control chow or a 2 % FM-VP4-enriched diet for 4 weeks. FM-VP4 reduced the in vivo net intestinal cholesterol absorption and plasma and liver cholesterol concentrations by 2·2-, 1·5- and 1·6-fold, respectively, compared with control mice. Furthermore, FM-VP4 also showed an impact on bile acid homeostasis. In FM-VP4 mice, liver and intestinal bile acid content was increased by 1·3- and 2·3-fold, respectively, whereas faecal bile acid output was 3·3-fold lower. FM-VP4 also increased the intestinal absorption of orally administered [3H]taurocholic acid to small intestine in vivo. Inhibition of intestinal cholesterol absorption by FM-VP4 was not mediated via transcriptional increases in intestine liver X receptor (LXR)-α, adenosine triphosphate-binding cassette transporter (ABC)-A1, ABCG5/G8 nor to decreases in intestinal Niemann-Pick C1-like 1 (NPC1L1) expression. In contrast, FM-VP4 up-regulated liver LXRα, ABCA1, ABCG5, scavenger receptor class BI (SR-BI) and hydroxymethylglutaryl coenzyme A reductase (HMGCoA-R) gene expression, whereas it down-regulated several farnesoid X receptor (FXR)-target genes such as cytochrome P450 family 7 subfamily A polypeptide 1 (CYP7A1) and Na+/taurocholate co-transporter polypeptide (NTCP). In conclusion, FM-VP4 reduced intestinal cholesterol absorption, plasma and liver cholesterol and affected bile acid homeostasis by inducing bile acid intestinal reabsorption and changed the liver expression of genes that play an essential role in cholesterol homeostasis. This is the first phytosterol or stanol that affects bile acid metabolism and lowers plasma cholesterol levels in normocholesterolaemic mice.


Corresponding author

*Corresponding author: Dr F. Blanco-Vaca, fax +34 93 2919196, email


Hide All
1Weihrauch, JL & Gardner, JM (1978) Sterol content of foods of plant origin. J Am Diet Assoc 73, 3947.
2Salen, G, Ahrens, EH Jr & Grundy, SM (1970) Metabolism of β-sitosterol in man. J Clin Invest 49, 952967.
3Ostlund, RE Jr, McGill, JB, Zeng, CM, et al. (2002) Gastrointestinal absorption and plasma kinetics of soy Δ5-phytosterols and phytostanols in humans. Am J Physiol Endocrinol Metab 282, E911E916.
4Moghadasian, MH & Frohlich, JJ (1999) Effects of dietary phytosterols on cholesterol metabolism and atherosclerosis: clinical and experimental evidence. Am J Med 107, 588594.
5Plat, J, Kerckhoffs, DA & Mensink, RP (2000) Therapeutic potential of plant sterols and stanols. Curr Opin Lipidol 11, 571576.
6Ostlund, RE Jr (2004) Phytosterols and cholesterol metabolism. Curr Opin Lipidol 15, 3741.
7Calpe-Berdiel, L, Escola-Gil, JC, Ribas, V, et al. (2005) Changes in intestinal and liver global gene expression in response to a phytosterol-enriched diet. Atherosclerosis 181, 7585.
8Calpe-Berdiel, L, Escola-Gil, JC & Blanco-Vaca, F (2008) New insights into the molecular actions of plant sterols and stanols in cholesterol metabolism. Atherosclerosis 203, 1831.
9Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (2001) Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 285, 24862497.
10Burnett, JR & Huff, MW (2006) Cholesterol absorption inhibitors as a therapeutic option for hypercholesterolaemia. Expert Opin Investig Drugs 15, 13371351.
11Wasan, KM, Peteherych, KD, Najafi, S, et al. (2001) Assessing the plasma pharmacokinetics, tissue distribution, excretion and effects on cholesterol pharmacokinetics of a novel hydrophilic compound, FM-VP4, following administration to rats. J Pharm Pharm Sci 4, 207216.
12Wasan, KM, Zamfir, C, Pritchard, PH, et al. (2003) Influence of phytostanol phosphoryl ascorbate (FM-VP4) on insulin resistance, hyperglycemia, plasma lipid levels, and gastrointestinal absorption of exogenous cholesterol in Zucker (fa/fa) fatty and lean rats. J Pharm Sci 92, 281288.
13Ebine, N, Jia, X, Demonty, I, et al. (2005) Effects of a water-soluble phytostanol ester on plasma cholesterol levels and red blood cell fragility in hamsters. Lipids 40, 175180.
14Lukic, T, Wasan, KM, Zamfir, D, et al. (2003) Disodium ascorbyl phytostanyl phosphate reduces plasma cholesterol concentrations and atherosclerotic lesion formation in apolipoprotein E-deficient mice. Metabolism 52, 425431.
15Wasan, KM, Najafi, S, Peteherych, KD, et al. (2001) Effects of a novel hydrophilic phytostanol analog on plasma lipid concentrations in gerbils. J Pharm Sci 90, 17951799.
16Wasan, KM, Najafi, S, Wong, J, et al. (2001) Assessing plasma lipid levels, body weight, and hepatic and renal toxicity following chronic oral administration of a water soluble phytostanol compound, FM-VP4, to gerbils. J Pharm Pharm Sci 4, 228234.
17Vissers, MN, Trip, MD, Pritchard, PH, et al. (2008) Efficacy and safety of disodium ascorbyl phytostanol phosphates in men with moderate dyslipidemia. Eur J Clin Pharmacol 64, 649650.
18Looije, NA, Risovic, V, Stewart, DJ, et al. (2005) Disodium ascorbyl phytostanyl phosphates (FM-VP4) reduces plasma cholesterol concentration, body weight and abdominal fat gain within a dietary-induced obese mouse model. J Pharm Pharm Sci 8, 400408.
19Thornton, SJ, Warburton, C, Wasan, KM, et al. (2007) Treatment with a cholesterol absorption inhibitor (FM-VP4) reduces body mass and adipose accumulation in developing and pre-obese mice. Drug Dev Ind Pharm 33, 10581069.
20Ikeda, I, Tanabe, Y & Sugano, M (1989) Effects of sitosterol and sitostanol on micellar solubility of cholesterol. J Nutr Sci Vitaminol (Tokyo) 35, 361369.
21Plat, J & Mensink, RP (2002) Effects of plant stanol esters on LDL receptor protein expression and on LDL receptor and HMG-CoA reductase mRNA expression in mononuclear blood cells of healthy men and women. FASEB J 16, 258260.
22Volger, OL, van der Boom, H, de Wit, EC, et al. (2001) Dietary plant stanol esters reduce VLDL cholesterol secretion and bile saturation in apolipoprotein E*3-Leiden transgenic mice. Arterioscler Thromb Vasc Biol 21, 10461052.
23Ntanios, FY & Jones, PJ (1999) Dietary sitostanol reciprocally influences cholesterol absorption and biosynthesis in hamsters and rabbits. Atherosclerosis 143, 341351.
24Xu, Z, Le, K & Moghadasian, MH (2007) Long-term phytosterol treatment alters gene expression in the liver of apo E-deficient mice. J Nutr Biochem 19, 545554.
25Shefer, S, Salen, G, Nguyen, L, et al. (1988) Competitive inhibition of bile acid synthesis by endogenous cholestanol and sitosterol in sitosterolemia with xanthomatosis. Effect on cholesterol 7 α-hydroxylase. J Clin Invest 82, 18331839.
26Yu, L, von Bergmann, K, Lutjohann, D, et al. (2004) Selective sterol accumulation in ABCG5/ABCG8-deficient mice. J Lipid Res 45, 301307.
27Yang, C, Yu, L, Li, W, et al. (2004) Disruption of cholesterol homeostasis by plant sterols. J Clin Invest 114, 813822.
28Nguyen, LB, Shefer, S, Salen, G, et al. (1990) A molecular defect in hepatic cholesterol biosynthesis in sitosterolemia with xanthomatosis. J Clin Invest 86, 923931.
29Gylling, H, Puska, P, Vartiainen, E, et al. (1999) Serum sterols during stanol ester feeding in a mildly hypercholesterolemic population. J Lipid Res 40, 593600.
30Normen, L, Dutta, P, Lia, A, et al. (2000) Soy sterol esters and β-sitostanol ester as inhibitors of cholesterol absorption in human small bowel. Am J Clin Nutr 71, 908913.
31Weststrate, JA, Ayesh, R, Bauer-Plank, C, et al. (1999) Safety evaluation of phytosterol esters. Part 4. Faecal concentrations of bile acids and neutral sterols in healthy normolipidaemic volunteers consuming a controlled diet either with or without a phytosterol ester-enriched margarine. Food Chem Toxicol 37, 10631071.
32Plosch, T, Kruit, JK, Bloks, VW, et al. (2006) Reduction of cholesterol absorption by dietary plant sterols and stanols in mice is independent of the ABCG5/8 transporter. J Nutr 136, 21352140.
33Ng, AW, Lukic, T, Pritchard, PH, et al. (2004) Development and characterization of liposomal disodium ascorbyl phytostanyl phosphates (FM-VP4). Drug Dev Ind Pharm 30, 739758.
34National Research Council (1996) Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academy Press.
35Ribas, V, Palomer, X, Roglans, N, et al. (2005) Paradoxical exacerbation of combined hyperlipidemia in human apolipoprotein A-II transgenic mice treated with fenofibrate. Biochim Biophys Acta 1737, 130137.
36Repa, JJ, Dietschy, JM & Turley, SD (2002) Inhibition of cholesterol absorption by SCH 58053 in the mouse is not mediated via changes in the expression of mRNA for ABCA1, ABCG5, or ABCG8 in the enterocyte. J Lipid Res 43, 18641874.
37Calpe-Berdiel, L, Escola-Gil, JC & Blanco-Vaca, F (2006) Phytosterol-mediated inhibition of intestinal cholesterol absorption is independent of ATP-binding cassette transporter A1. Br J Nutr 95, 618622.
38Yu, L, Li-Hawkins, J, Hammer, RE, et al. (2002) Overexpression of ABCG5 and ABCG8 promotes biliary cholesterol secretion and reduces fractional absorption of dietary cholesterol. J Clin Invest 110, 671680.
39Plosch, T, Kok, T, Bloks, VW, et al. (2002) Increased hepatobiliary and fecal cholesterol excretion upon activation of the liver X receptor is independent of ABCA1. J Biol Chem 277, 3387033877.
40Wilund, KR, Yu, L, Xu, F, et al. (2004) High-level expression of ABCG5 and ABCG8 attenuates diet-induced hypercholesterolemia and atherosclerosis in Ldlr − / −  mice. J Lipid Res 45, 14291436.
41Kozarsky, KF, Donahee, MH, Rigotti, A, et al. (1997) Overexpression of the HDL receptor SR-BI alters plasma HDL and bile cholesterol levels. Nature 387, 414417.
42Kozarsky, KF, Donahee, MH, Glick, JM, et al. (2000) Gene transfer and hepatic overexpression of the HDL receptor SR-BI reduces atherosclerosis in the cholesterol-fed LDL receptor-deficient mouse. Arterioscler Thromb Vasc Biol 20, 721727.
43Naik, SU, Wang, X, Da Silva, JS, et al. (2006) Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation 113, 9097.
44Field, FJ, Born, E & Mathur, SN (2004) Stanol esters decrease plasma cholesterol independently of intestinal ABC sterol transporters and Niemann-Pick C1-like 1 protein gene expression. J Lipid Res 45, 22522259.
45Chiang, JY (2002) Bile acid regulation of gene expression: roles of nuclear hormone receptors. Endocr Rev 23, 443463.
46Russell, DW (2003) The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem 72, 137174.
47Chiang, JY (2004) Regulation of bile acid synthesis: pathways, nuclear receptors, and mechanisms. J Hepatol 40, 539551.
48Stedman, C, Liddle, C, Coulter, S, et al. (2006) Benefit of farnesoid X receptor inhibition in obstructive cholestasis. Proc Natl Acad Sci U S A 103, 1132311328.
49Alrefai, WA & Gill, RK (2007) Bile acid transporters: structure, function, regulation and pathophysiological implications. Pharm Res 24, 18031823.
50Teng, S & Piquette-Miller, M (2007) Hepatoprotective role of PXR activation and MRP3 in cholic acid-induced cholestasis. Br J Pharmacol 151, 367376.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed