Skip to main content Accessibility help
×
Home

Digestible indispensable amino acid scores of nine cooked cereal grains

  • Fei Han (a1), Fenli Han (a1) (a2), Yong Wang (a1), Liuping Fan (a2), Ge Song (a1), Xi Chen (a1), Ping Jiang (a1), Haijiang Miao (a1) and Yangyang Han (a1) (a2)...

Abstract

True ileal digestibility (TID) values of amino acid (AA) obtained using growing rats are often used for the characterisation of protein quality in different foods and acquisition of digestible indispensable amino acid scores (DIAAS) in adult humans. Here, we conducted an experiment to determine the TID values of AA obtained from nine cooked cereal grains (brown rice, polished rice, buckwheat, oats, proso millet, foxtail millet, tartary buckwheat, adlay and whole wheat) fed to growing Sprague–Dawley male rats. All rats were fed a standard basal diet for 7 d and then received each diet for 7 d. Ileal contents were collected from the terminal 20 cm of ileum. Among the TID values obtained, whole wheat had the highest values (P<0·05), and polished rice, proso millet and tartary buckwheat had relatively low values. The TID indispensable AA concentrations in whole wheat were greater than those of brown rice or polished rice (P<0·05), and polished rice was the lowest total TID concentrations among the other cereal grains. The DIAAS was 68 for buckwheat, 47 for tartary buckwheat, 43 for oats, 42 for brown rice, 37 for polished rice, 20 for whole wheat, 13 for adlay, 10 for foxtail millet and 7 for proso millet. In this study, the TID values of the nine cooked cereal grains commonly consumed in China were used for the creation of a DIAAS database and thus gained public health outcomes.

Copyright

Corresponding author

*Corresponding author: F. Han, email hf@chinagrain.org

Footnotes

Hide All

These authors contributed equally to this work.

Footnotes

References

Hide All
1. Moughan, PJ (2012) Dietary protein for human health (Preface). Br J Nutr 108, S1S2.
2. Food and Agriculture Organization of the United Nations (1991) Protein Quality Evaluation. Report of the Joint FAO/WHO Expert Consultation, Bethesda, Md., USA, 4-8 December 1989. FAO Food and Nutrition Paper 51. Rome: FAO.
3. Rutherfurd, SM, Fanning, AC, Miller, BJ, et al. (2015) Protein digestibility-corrected amino acid scores and digestible indispensable amino acid scores differentially describe protein quality in growing male rats. J Nutr 145, 372379.
4. Schaafsma, G (2012) Advantages and limitations of the protein digestibility-corrected amino acid score (PDCAAS) as a method for evaluating protein quality in human diets. Br J Nutr 108, S333S336.
5. Moughan, PJ & Stevens, BR (2012) Digestion and absorption of protein. In Biochemical, Physiological and Molecular Aspects of Human Nutrition, pp. 162–178 [MH Stipanuk and MA Caudill, editors]. St Louis, MO: Elsevier.
6. Stein, HH, Seve, B, Fuller, MF, et al. (2007) Invited review: amino acid bioavailability and digestibility in pig feed ingredients: terminology and application. J Anim Sci 85, 172180.
7. Moughan, PJ (2003) Amino acid availability: aspects of chemical analysis and bioassay methodology. Nutr Res Rev 16, 127141.
8. Rowan, AM, Moughan, PJ, Wilson, MN, et al. (1994) Comparison of the ileal and fecal digestibility of dietary amino-acids in adult humans and evaluation of the pig as a model animal for digestion studies in man. Br J Nutr 71, 2942.
9. Schaafsma, G (2000) The protein digestibility-corrected amino acid score. J Nutr 130, 1865S1867S.
10. Schaafsma, G (2005) The protein digestibility-corrected amino acid score (PDCAAS) – a concept for describing protein quality in foods and food ingredients: a critical review. J AOAC Int 88, 988994.
11. Lee, WTK, Weisell, R, Albert, J, et al. (2016) Research approaches and methods for evaluating the protein quality of human foods proposed by an FAO expert working group in 2014. J Nutr 146, 929932.
12. Boye, J, Wijesinha-Bettoni, R & Burlingame, B (2012) Protein quality evaluation twenty years after the introduction of the protein digestibility corrected amino acid score method. Br J Nutr 108, S183S211.
13. Millward, DJ, Layman, DK, Tome, D, et al. (2008) Protein quality assessment: impact of expanding understanding of protein and amino acid needs for optimal health. Am J Clin Nutr 87, 1576S1581S.
14. Gilani, GS, Xiao, CW & Cockell, KA (2012) Impact of antinutritional factors in food proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br J Nutr 108, S315S332.
15. Food and Agriculture Organization of the United Nations (2013) Dietary protein quality evaluation in human nutrition. Report of an FAO Expert Consultation. FAO Food and Nutrition Paper 92. http://www.fao.org/ag/humannutrition/35978-02317b979a686a57aa4593304ffc17f06.pdf
16. Wolfe, RR, Rutherfurd, SM, Kim, IY, et al. (2016) Protein quality as determined by the digestible indispensable amino acid score: evaluation of factors underlying the calculation. Nutr Rev 74, 584599.
17. Bwibo, NO & Neumann, CG (2003) The need for animal source foods by Kenyan children. J Nutr 133, 3936S3940S.
18. Deglaire, A & Moughan, PJ (2012) Animal models for determining amino acid digestibility in humans – a review. Br J Nutr 108, S273S281.
19. Butts, CA, Monro, JA & Moughan, PJ (2012) In vitro determination of dietary protein and amino acid digestibility for humans. Br J Nutr 108, S282S287.
20. Food and Agriculture Organization of the United Nations (2014) Research Approaches and Methods for Evaluating the Protein Quality of Human Foods: Report of a FAO Expert Working Group. Rome: FAO.
21. Moughan, PJ & Rutherfurd, SM (2012) Gut luminal endogenous protein: implications for the determination of ileal amino acid digestibility in humans. Br J Nutr 108, S258S263.
22. Rutherfurd, SM & Moughan, PJ (2003) The rat as a model animal for the growing pig in determining ileal amino acid digestibility in soya and milk proteins. J Anim Physiol Anim Nutr 87, 292300.
23. Rutherfurd, SM & Moughan, PJ (1998) The digestible amino acid composition of several milk proteins: application of a new bioassay. J Dairy Sci 81, 909917.
24. Rutherfurd, SM & Gilani, GS (2009) Amino acid analysis. Curr Protoc Protein Sci 58, 11.9.111.9.37.
25. Short, FJ, Gorton, P, Wiseman, J, et al. (1996) Determination of titanium dioxide added as an inert marker in chicken digestibility studies. Anim Feed Sci Technol 59, 215221.
26. Rutherfurd, SM, Bains, K & Moughan, PJ (2012) Available lysine and digestible amino acid contents of proteinaceous foods of India. Br J Nutr 108, S59S68.
27. Rutherfurd, SM, Cui, J, Goroncy, AK, et al. (2015) Dietary protein structure affects endogenous ileal amino acids but not true ileal amino acid digestibility in growing male rats. J Nutr 145, 193198.
28. Cervantes-Pahm, SK, Liu, Y & Stein, HH (2014) Digestible indispensable amino acid score and digestible amino acids in eight cereal grains. Br J Nutr 111, 16631672.
29. Charan, J & Kantharia, ND (2013) How to calculate sample size in animal studies? J Pharmacol Pharmacother 4, 303306.
30. Zhang, Z, Zhou, M, Tang, Y, et al. (2012) Bioactive compounds in functional buckwheat food. Food Res Int 49, 389395.
31. Lu, H, Zhang, J, Liu, K, et al. (2009) Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10 000 years ago. Proc Natl Acad Sci U S A 106, 73677372.
32. Amadou, I, Le, G, Amza, T, et al. (2013) Purification and characterization of foxtail millet-derived peptides with antioxidant and antimicrobial activities. Food Res Int 51, 422428.
33. Wang, L, Chen, C, Su, A, et al. (2016) Structural characterization of phenolic compounds and antioxidant activity of the phenolic-rich fraction from defatted adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) seed meal. Food Chem 196, 509517.
34. Guo, X, Ma, Y, Parry, J, et al. (2011) Phenolics content and antioxidant activity of tartary buckwheat from different locations. Molecules 16, 98509867.
35. Zhang, L, Liu, R & Niu, W (2014) Phytochemical and antiproliferative activity of proso millet. PLOS ONE 9, e104058.
36. Chen, H, Chung, C, Chiang, W, et al. (2011) Anti-inflammatory effects and chemical study of a flavonoid-enriched fraction from adlay bran. Food Chem 126, 17411748.
37. Wielen, NVD, Moughan, PJ & Mensink, M (2017) Amino acid absorption in the large intestine of humans and porcine models. J Nutr 147, 14931498.
38. Fuller, M (2012) Determination of protein and amino acid digestibility in foods including implications of gut microbial amino acid synthesis. Br J Nutr 108, S238S246.
39. Nosworthy, MG, Neufeld, J, Frohlich, P, et al. (2017) Determination of the protein quality of cooked Canadian pulses. Food Sci Nutr 5, 896903.
40. Mathai, JK, Liu, Y & Stein, HH (2017) Values for digestible indispensable amino acid scores (DIAAS) for some dairy and plant proteins may better describe protein quality than values calculated using the concept for protein digestibility-corrected amino acid scores (PDCAAS). Br J Nutr 117, 490499.
41. Abelilla, JJ, Liu, Y & Stein, HH (2018) Digestible indispensable amino acid score (DIAAS) and protein digestibility corrected amino acid score (PDCAAS) in oat protein concentrate measured in 20 to 30 kilogram pigs. J Sci Food Agric 98, 410414.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed