Skip to main content Accessibility help

Dietary supplementation with Lactobacillus plantarum modified gut microbiota, bile acid profile and glucose homoeostasis in weaning piglets

  • Sen Lin (a1) (a2), Xiaomin Yang (a1), Yanrong Long (a1), Heju Zhong (a1), Peng Wang (a1), Peiqiang Yuan (a1), Xiaoling Zhang (a1), Lianqiang Che (a1), Bin Feng (a1), Jian Li (a1), Yong Zhuo (a1), Yan Lin (a1), Shengyu Xu (a1), De Wu (a1) and Zhengfeng Fang (a1)...


Bile acids (BA) have emerged as signalling molecules regulating intestinal physiology. The importance of intestinal microbiota in production of secondary BA, for example, lithocholic acid (LCA) which impairs enterocyte proliferation and permeability, triggered us to determine the effects of oral probiotics on intestinal BA metabolism. Piglets were weaned at 28 d of age and allocated into control (CON, n 14) or probiotic (PRO, n 14) group fed 50 mg of Lactobacillus plantarum daily, and gut microbiota and BA profile were determined. To test the potential interaction of LCA with bacteria endotoxins in inducing damage of enterocytes, IPEC-J2 cells were treated with LCA, lipopolysaccharide (LPS) and LCA + LPS and expressions of genes related to inflammation, antioxidant capacity and nutrient transport were determined. Compared with the CON group, the PRO group showed lower total LCA level in the ileum and higher relative abundance of the Lactobacillus genus in faeces. In contrast, the relative abundances of Bacteroides, Clostridium_sensu_stricto_1, Parabacteroides and Ruminococcus_1, important bacteria genera in BA biotransformation, were all lower in the PRO than in the CON group. Moreover, PRO piglets had lower postprandial glucagon-like peptide-1 level, while higher glucose level than CON piglets. Co-administration of LPS and LCA led to down-regulated expression of glucose and peptide transporter genes in IPEC-J2 cells. Altogether, oral L. plantarum altered BA profile probably by modulating relative abundances of gut microbial genera that play key roles in BA metabolism and might consequently impact glucose homoeostasis. The detrimental effect of LCA on nutrient transport in enterocytes might be aggravated under LPS challenge.


Corresponding author

*Corresponding author: Zhengfeng Fang, fax +86-28-86290920, email


Hide All
1.Chiang, JY (2013) Bile acid metabolism and signaling. Compr Physiol 3, 11911212.
2.Hofmann, AF (2009) The enterohepatic circulation of bile acids in mammals: form and functions. Front Biosci 14, 25842598.
3.Keating, N & Keely, SJ (2009) Bile acids in regulation of intestinal physiology. Curr Gastroenterol Rep 11, 375382.
4.Jain, AK, Stoll, B, Burrin, DG, et al. (2012) Enteral bile acid treatment improves parenteral nutrition-related liver disease and intestinal mucosal atrophy in neonatal pigs. Am J Physiol Gastrointest Liver Physiol 302, G218G224.
5.Stenman, LK, Holma, R, Eggert, A, et al. (2013) A novel mechanism for gut barrier dysfunction by dietary fat: epithelial disruption by hydrophobic bile acids. Am J Physiol Gastrointest Liver Physiol 304, G227G234.
6.Katona, BW, Anant, S, Covey, DF, et al. (2009) Characterization of enantiomeric bile acid-induced apoptosis in colon cancer cell lines. J Biol Chem 284, 33543364.
7.Ridlon, JM, Kang, DJ & Hylemon, PB (2006) Bile salt biotransformations by human intestinal bacteria. J Lipid Res 47, 241259.
8.Ridlon, JM, Harris, SC, Bhowmik, S, et al. (2016) Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes 7, 2239.
9.Pereira-Fantini, PM, Lapthorne, S, Joyce, SA, et al. (2014) Altered FXR signalling is associated with bile acid dysmetabolism in short bowel syndrome-associated liver disease. J Hepatol 61, 11151125.
10.Wahlström, A, Sayin, S, Marschall, HU, et al. (2016) Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24, 4150.
11.Studer, N, Desharnais, L, Beutler, M, et al. (2016) Functional intestinal bile acid 7α-dehydroxylation by Clostridium scindens associated with protection from Clostridium difficile infection in a gnotobiotic mouse model. Front Cell Infect Microbiol 6, 191.
12.Jia, W, Xie, GX & Jia, WP (2018) Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat Rev Gastro Hepat 15, 111128.
13.Cain, AM & Karpa, KD (2011) Clinical utility of probiotics in inflammatory bowel disease. Altern Ther Health Med 17, 7279.
14.Hegazy, SK & El-Bedewy, MM (2010) Effect of probiotics on pro-inflammatory cytokines and NF-kappaB activation in ulcerative colitis. World J Gastroenterol 16, 41454151.
15.Liu, H, Hou, C, Wang, G, et al. (2017) Lactobacillus reuteri I5007 modulates intestinal host defense peptide expression in the model of IPEC-J2 cells and neonatal piglets. Nutrients 9, 559.
16.Linninge, C, Xu, J, Bahl, MI, et al. (2019) Lactobacillus fermentum and Lactobacillus plantarum increased gut microbiota diversity and functionality, and mitigated Enterobacteriaceae, in a mouse model. Benef Microbes 10, 413424.
17.Mujagic, Z, de Vos, P, Boekschoten, MV, et al. (2017) The effects of Lactobacillus plantarum on small intestinal barrier function and mucosal gene transcription; a randomized double-blind placebo controlled trial. Sci Rep 7, 40128.
18.Wang, J, Ji, H, Wang, S, et al. (2018) Probiotic Lactobacillus plantarum promotes intestinal barrier function by strengthening the epithelium and modulating gut microbiota. Front Microbiol 9, 1953.
19.Monteiro, CRAV, do Carmo, MS, Melo, BO, et al. (2019) In vitro antimicrobial activity and probiotic potential of Bifidobacterium and Lactobacillus against species of Clostridium. Nutrients 11, 448.
20.Prete, R, Long, SL, Gallardo, AL, et al. (2020) Beneficial bile acid metabolism from Lactobacillus plantarum of food origin. Sci Rep 10, 1165.
21.Wijtten, PJA, van der Meulen, J & Verstegen, MWA (2011) Intestinal barrier function and absorption in pigs after weaning: a review. Br J Nutr 105, 967981.
22.Lin, S, Yang, X, Yuan, P, et al. (2019) Undernutrition shapes the gut microbiota and bile acid profile in association with altered gut-liver FXR signaling in weaning pigs. J Agric Food Chem 67, 36913701.
23.Omonijo, FA, Liu, S, Hui, Q, et al. (2019) Thymol improves barrier function and attenuates inflammatory responses in porcine intestinal epithelial cells during lipopolysaccharide (LPS)-induced inflammation. J Agric Food Chem 67, 615624.
24.Livak, KJ & Schmittgen, TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25, 402408.
25.Lukens, JR, Gurung, P, Vogel, P, et al. (2014) Dietary modulation of the microbiome affects autoinflammatory disease. Nature 516, 246249.
26.Dossa, AY, Escobar, O, Golden, J, et al. (2016) Bile acids regulate intestinal cell proliferation by modulating EGFR and FXR signaling. Am J Physiol Gastrointest Liver Physiol 310, G81G92.
27.Raimondi, F, Santoro, P, Barone, MV, et al. (2008) Bile acids modulate tight junction structure and barrier function of Caco-2 monolayers via EGFR activation. Am J Physiol Gastrointest Liver Physiol 294, G906G913.
28.Powell, AA, LaRue, JM, Batta, AKet al. (2001) Bile acid hydrophobicity is correlated with induction of apoptosis and/or growth arrest in HCT116 cells. Biochem J 356, 481486.
29.Degirolamo, C, Modica, S, Palasciano, G, et al. (2011) Bile acids and colon cancer: solving the puzzle with nuclear receptors. Trends Mol Med 17, 564572.
30.Fang, W, Zhang, L, Meng, QS, et al. (2018) Effects of dietary pectin on the profile and transport of intestinal bile acids in young pigs. J Anim Sci 96, 47434754.
31.Thakare, R, Alamoudi, JA, Gautam, N, et al. (2018) Species differences in bile acids I. Plasma and urine bile acid composition. J Appl Toxicol 38, 13231335.
32.Wang, T, Teng, K, Liu, Y, et al. (2019) Lactobacillus plantarum PFM 105 promotes intestinal development through modulation of gut microbiota in weaning piglets. Front Microbiol 10, 90.
33.Mercer, KE, Bhattacharyya, S, Diaz-Rubio, ME, et al. (2018) Infant formula feeding increases hepatic cholesterol 7α hydroxylase (CYP7A1) expression and fecal bile acid loss in neonatal piglets. J Nutr 148, 702711.
34.Marin, JJG, Macias, RIR, Briz, O, et al. (2016) Bile acids in physiology, pathology and pharmacology. Curr Drug Metab 17, 429.
35.Parks, DJ, Blanchard, SG, Bledsoe, RK, et al. (1999) Bile acids: natural ligands for an orphan nuclear receptor. Science 284, 13651368.
36.Wang, H, Chen, J, Hollister, K, et al. (1999) Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol Cell 3, 543553.
37.Sato, H, Genet, C, Strehle, A, et al. (2007) Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochem Biophys Res Commun 362, 793798.
38.Kawamata, Y, Fujii, R, Hosoya, M, et al. (2003) A G protein-coupled receptor responsive to bile acids. J Biol Chem 278, 94359440.
39.Burrin, D, Stoll, B & Moore, D (2013) Digestive physiology of the pig symposium: intestinal bile acid sensing is linked to key endocrine and metabolic signaling pathways. J Anim Sci 91, 19912000.
40.Drucker, DJ, Habener, JF & Holst, JJ (2017) Discovery, characterization, and clinical development of the glucagon-like peptides. J Clin Invest 127, 42174227.
41.Thomas, C, Gioiello, A, Noriega, L, et al. (2009) TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 10, 167177.
42.Parker, HE, Wallis, K, le Roux, CW, et al. (2012) Molecular mechanisms underlying bile acid-stimulated glucagon-like peptide-1 secretion. Br J Pharmacol 165, 414423.
43.Susumu, K, Akira, H & Gozoh, T (2005) Bile acids promote glucagon-like peptide-1 secretion through TGR5 in a murine enteroendocrine cell line STC-1. Biochem Biophys Res Commun 329, 386390.
44.Joyce, SA & Gahan, CGM (2016) Bile acid modifications at the microbe–host interface: potential for nutraceutical and pharmaceutical interventions in host health. Annu Rev Food Sci Technol 7, 313333.
45.Zhao, WJ, Wang, YP, Liu, SY, et al. (2015) The dynamic distribution of porcine microbiota across different ages and gastrointestinal tract segments. PLOS ONE 10, e0117441.
46.Vo, N, Tsai, TC, Maxwell, C, et al. (2017) Early exposure to agricultural soil accelerates the maturation of the early-life pig gut microbiota. Anaerobe 45, 3139.
47.Twitchell, EL, Tin, C, Wen, K, et al. (2016) Modeling human enteric dysbiosis and rotavirus immunity in gnotobiotic pigs. Gut Pathog 8, 51.
48.Fava, F & Danese, S (2011) Intestinal microbiota in inflammatory bowel disease: friend of foe? World J Gastroenterol 17, 557566.
49.Carbonero, F, Benefiel, AC, Alizadeh-Ghamsari, AH, et al. (2012) Microbial pathways in colonic sulfur metabolism and links with health and disease. Front Physiol 3, 448.
50.Lin, H, An, Y, Tang, H, et al. (2019) Alterations of bile acids and gut microbiota in obesity induced by high fat diet in rat model. J Agric Food Chem 67, 36243632.
51.Wang, K, Liao, MF, Zhou, N, et al. (2019) Parabacteroides distasonis alleviates obesity and metabolic dysfunctions via production of succinate and secondary bile acids. Cell Rep 26, 222235.
52.Stenman, LK, Holma, R & Korpela, R (2012) High-fat-induced intestinal permeability dysfunction associated with altered fecal bile acids. World J Gastroenterol 18, 923929.
53.Waga, S, Hannon, GJ, Beach, D, et al. (1994) The p21 inhibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA. Nature 369, 574578.
54.Aruoma, OI (1998) Free radicals, oxidative stress, and antioxidants in human health and disease. J Am Oil Chem Soc 75, 199212.
55.Chen, LH, Tuo, BG & Dong, H (2016) Regulation of intestinal glucose absorption by ion channels and transporters. Nutrients 8, 11.
56.Shen, W & Matsui, T (2017) Current knowledge of intestinal absorption of bioactive peptides. Food Funct 8, 43064314.


Type Description Title
Supplementary materials

Lin et al. Supplementary Materials
Lin et al. Supplementary Materials

 PDF (104 KB)
104 KB

Dietary supplementation with Lactobacillus plantarum modified gut microbiota, bile acid profile and glucose homoeostasis in weaning piglets

  • Sen Lin (a1) (a2), Xiaomin Yang (a1), Yanrong Long (a1), Heju Zhong (a1), Peng Wang (a1), Peiqiang Yuan (a1), Xiaoling Zhang (a1), Lianqiang Che (a1), Bin Feng (a1), Jian Li (a1), Yong Zhuo (a1), Yan Lin (a1), Shengyu Xu (a1), De Wu (a1) and Zhengfeng Fang (a1)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.