Skip to main content Accessibility help
×
Home

Dietary supplementation with hydroxypropyl-distarch phosphate from waxy maize starch increases resting energy expenditure by lowering the postprandial glucose-dependent insulinotropic polypeptide response in human subjects

  • Akira Shimotoyodome (a1), Junko Suzuki (a1), Yoji Kameo (a2) and Tadashi Hase (a1)

Abstract

The aim of the present study was to investigate the effects of hydroxypropyl-distarch phosphate (HDP) supplementation on postprandial energy metabolism and glucose-dependent insulinotropic polypeptide (GIP) in human subjects. A total of ten healthy male subjects, with a mean BMI of 23·6 (sem 1·3) kg/m2, age 35·2 (sem 1·9) years and body weight 71·1 (sem 4·0) kg, participated in a randomised, cross-over, intervention study with two different test meals (1673·6 kJ) containing either waxy maize starch or HDP from waxy maize starch (degree of substitution 0·154, P content 0·004 %). Resting energy expenditure (REE) and blood concentrations of various biomarkers were measured at fasting and up to 180 min postprandially. Indirect calorimetry showed that the HDP meal caused higher REE (P < 0·05) and fat utilisation (P < 0·001) than the waxy maize starch meal. The HDP meal led to significantly lower postprandial glucose (P < 0·05), insulin (P < 0·05) and GIP (P < 0·05) responses than the waxy maize starch meal. Both postprandial REE (R − 0·576, P < 0·01) and fat utilisation (R − 0·514, P < 0·05) were negatively correlated with the postprandial GIP response, but not with the glucose and insulin responses. In conclusion, dietary supplementation with HDP lowers postprandial GIP and increases postprandial REE and fat utilisation in healthy humans. An HDP-rich diet may therefore have beneficial implications in weight management. Further studies are required to confirm the efficacy in overweight or obese subjects, and to determine the precise mechanisms.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary supplementation with hydroxypropyl-distarch phosphate from waxy maize starch increases resting energy expenditure by lowering the postprandial glucose-dependent insulinotropic polypeptide response in human subjects
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary supplementation with hydroxypropyl-distarch phosphate from waxy maize starch increases resting energy expenditure by lowering the postprandial glucose-dependent insulinotropic polypeptide response in human subjects
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary supplementation with hydroxypropyl-distarch phosphate from waxy maize starch increases resting energy expenditure by lowering the postprandial glucose-dependent insulinotropic polypeptide response in human subjects
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: A. Shimotoyodome, email shimotoyodome.akira@kao.co.jp

References

Hide All
1 Englyst, HN & Cummings, JH (1987) Resistant starch, a “new” food component: a classification of starch for nutritional purposes. In Cereals in a European Context, pp. 221233 [Morton, ID, editor]. Chichester: Ellis Horwood.
2 Shimotoyodome, A, Suzuki, J, Fukuoka, D, et al. (2010) RS4-type resistant starch prevents high-fat diet-induced obesity via increased hepatic fatty acid oxidation and decreased postprandial GIP in C57BL/6J mice. Am J Physiol Endocrinol Metab 298, E652E662.
3 Björck, I, Gunnarsson, A & Östergrd, K (1989) A study of native and chemically modified potato starch. Part II: digestibility in the rat intestinal tract. Starch/Stärke 41, 128134.
4 Ebihara, K (1992) In vitro alpha-amylase hydrolysis of modified starch and postprandial plasma glucose response [in Japanese]. J Jpn Soc Nutr Food Sci 45, 551553.
5 Östergrd, K, Björck, I & Gunnarsson, A (1988) A study of native and chemically modified potato starch. Part I: analysis and enzymic availability in vitro. Starch/Stärke 40, 5866.
6 Whistler, RL & Belfort, AM (1961) Nutritional value of chemically modified corn starch. Science 133, 15991600.
7 Wootton, M & Chaudhry, MA (1981) In vitro digestion of hydroxypropyl derivatives of wheat starch. I. Digestibility and action pattern using porcine pancreatic alpha-amylase. Starch/Stärke 33, 135137.
8 Asp, NG (1992) Resistant starch. Proceeding of the 2nd plenary meeting of EURESTA: European Flair Concerted Action No. 11 on physiological implication of the consumption of resistant starch in man [preface]. Eur J Clin Nutr 46, Supp. 2, S1.
9 Bird, AR, Brown, IL & Topping, DL (2000) Starches, resistant starches, the gut microflora and human health. Curr Issues Intest Microbiol 1, 2537.
10 Annison, G & Topping, DL (1994) Nutritional role of resistant starch: chemical structure vs physiological function. Annu Rev Nutr 14, 297320.
11 Granfeldt, Y, Drews, A & Bjorck, I (1995) Arepas made from high amylase corn flour produce favorably low glucose and insulin responses in healthy humans. J Nutr 125, 459465.
12 Heijnen, ML, van Amelsvoort, JM & Weststrate, JA (1995) Interaction between physical structure and amylose:amylopectin ratio of foods on postprandial glucose and insulin responses in healthy subjects. Eur J Clin Nutr 49, 446457.
13 Hoebler, C (1999) Bioavailability of starch in bread rich in amylose: metabolic responses in healthy subjects and starch structure. Eur J Clin Nutr 53, 360366.
14 Raben, A, Tagliabue, A, Christensen, NJ, et al. (1994) Resistant starch: the effect on postprandial glycemia, hormonal response, and satiety. Am J Clin Nutr 60, 544551.
15 Weststrate, JA & van Amelsvoort, JM (1993) Effects of the amylose content of breakfast and lunch on postprandial variables in male volunteers. Am J Clin Nutr 58, 180186.
16 Behall, KM, Scholfield, DJ & Canary, J (1988) Effect of starch structure on glucose and insulin responses in adults. Am J Clin Nutr 47, 428432.
17 Jenkins, DJ, Vuksan, V, Kendall, CW, et al. (1998) Physiological effects of resistant starches on fecal bulk, short chain fatty acids, blood lipids and glycemic index. J Am Coll Nutr 17, 609616.
18 Ranganathan, S, Champ, M, Pechard, C, et al. (1994) Comparative study of the acute effects of resistant starch and dietary fibers on metabolic indexes in men. Am J Clin Nutr 59, 879883.
19 Tagliabue, A, Raben, A, Heijnen, ML, et al. (1995) The effect of raw potato starch on energy expenditure and substrate oxidation. Am J Clin Nutr 61, 10701075.
20 Irwin, N & Flatt, PR (2009) Therapeutic potential for GIP receptor agonists and antagonists. Best Pract Res Clin Endocrinol Metab 23, 499512.
21 Song, DH & Wolfe, MM (2007) Glucose-dependent insulinotropic polypeptide and its role in obesity. Curr Opin Endocrinol Diabetes Obes 14, 4651.
22 Althage, MC, Ford, EL, Wang, S, et al. (2008) Targeted ablation of glucose-dependent insulinotropic polypeptide-producing cells in transgenic mice reduces obesity and insulin resistance induced by a high fat diet. J Biol Chem 283, 1836518376.
23 Miyawaki, K, Yamada, Y, Ban, N, et al. (2002) Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nat Med 8, 738742.
24 Daousi, C, Wilding, JPH, Aditya, S, et al. (2009) Effects of peripheral administration of synthetic human glucose-dependent insulinotropic peptide (GIP) on energy expenditure and subjective appetite sensations in healthy normal weight subjects and obese patients with type 2 diabetes. Clin Endocrinol 71, 195201.
25 Wahrlich, V, Anjos, LA, Going, SB, et al. (2006) Validation of the VO2000 calorimeter for measuring resting metabolic rate. Clin Nutr 25, 687692.
26 Weir, J (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109, 19.
27 Notivol, R, Carrio, I & Cano, L (1984) Gastric emptying of solid and liquid meals in healthy young subjects. Scand J Gastroenterol 19, 11071113.
28 Elliot, RM, Morgan, LM, Tredger, JA, et al. (1993) Glucagon-like peptide-1 (7–36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute post-prandial and 24-h secretion patterns. J Endocrinol 138, 159166.
29 Meier, JJ & Nauck, MA (2004) Glucose-dependent insulinotropic polypeptide/gastric inhibitory polypeptide. Best Pract Res Clin Endocrinol Metab 18, 587606.
30 Shimotoyodome, A, Fukuoka, D, Suzuki, J, et al. (2009) Coingestion of acylglycerols differentially affects glucose-induced insulin secretion via glucose-dependent insulinotropic polypeptide in C57BL/6J mice. Endocrinology 150, 21182126.
31 Parker, HE, Habib, AM, Rogers, GJ, et al. (2009) Nutrient-dependent secretion of glucose-dependent insulinotropic polypeptide from primary murine K cells. Diabetologia 52, 289298.
32 Tseng, CC, Jarboe, LA & Wolfe, MM (1994) Regulation of glucose-dependent insulinotropic peptide gene expression by a glucose meal. Am J Physiol 266, G887G891.
33 Kainuma, K, Matsunaga, A, Itakawa, M, et al. (1981) New enzyme system – β-amylase-pullulanase – to determine the degree of gelatinization and retrogradation of starch or starch products [in Japanese]. Denpun Kagaku 28, 235240.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Shimotoyodome supplementary figure 1
Shimotoyodome supplementary figure 1

 Unknown (112 KB)
112 KB
UNKNOWN
Supplementary materials

Shimotoyodome supplementary figure 2
Shimotoyodome supplementary figure 2

 Unknown (96 KB)
96 KB

Dietary supplementation with hydroxypropyl-distarch phosphate from waxy maize starch increases resting energy expenditure by lowering the postprandial glucose-dependent insulinotropic polypeptide response in human subjects

  • Akira Shimotoyodome (a1), Junko Suzuki (a1), Yoji Kameo (a2) and Tadashi Hase (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed