Skip to main content Accessibility help
×
Home

Dietary single cell protein reduces fatty liver in obese Zucker rats

  • Oddrun Anita Gudbrandsen (a1), Hege Wergedahl (a1), Bjørn Liaset (a2), Marit Espe (a2), Sverre Mørk (a3) and Rolf Kristian Berge (a1)...

Abstract

There is growing evidence that dietary proteins may interfere with lipid metabolism. We therefore examined the effects of feeding obese Zucker rats a single cell protein (SCP) with low ratios of methionine:glycine and lysine:arginine for 6 weeks. SCP feeding reduced the hepatic steatosis and lowered the plasma transaminase levels when compared with casein-fed rats (controls). The fatty acid oxidation was increased in liver mitochondria and peroxisomes, whereas the activities of enzymes involved in lipogenesis and TAG biosynthesis were unaffected. SCP feeding affected the fatty acid composition of liver lipids and plasma, and reduced the mRNA levels of the fatty acid desaturases. The decreased gene expression of stearoyl-CoA desaturase suggested that the fatty acids were directed towards oxidation rather than esterification as TAG. The decreased mRNA levels of VLDL-receptor and lipoprotein lipase in the liver after SCP feeding suggested that the uptake of TAG-rich lipoprotein to the liver was decreased. To conclude, the reduced fatty liver by SCP feeding may be caused by the increased capacity for fatty acid β-oxidation in the liver, combined with changed fatty acid composition and possibly a reduced hepatic clearance of circulating VLDL. An increased awareness of the effect of dietary proteins on lipid metabolism could be of relevance in future dietary treatment of non-alcoholic fatty liver disease.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dietary single cell protein reduces fatty liver in obese Zucker rats
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dietary single cell protein reduces fatty liver in obese Zucker rats
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dietary single cell protein reduces fatty liver in obese Zucker rats
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Oddrun A. Gudbrandsen, fax +47 55973115, email nkjgu@uib.no

References

Hide All
1Adler, M & Schaffner, F (1979) Fatty liver hepatitis and cirrhosis in obese patients. Am J Med 67, 811816.
2Ludwig, J, Viggiano, TR, McGill, DB & Oh, BJ (1980) Nonalcoholic steatohepatitis: Mayo Clinic experiences with a hitherto unnamed disease. Mayo Clin Proc 55, 434438.
3Wanless, IR & Lentz, JS (1990) Fatty liver hepatitis (steatohepatitis) and obesity: an autopsy study with analysis of risk factors. Hepatology 12, 11061110.
4Sheth, SG, Gordon, FD & Chopra, S (1997) Nonalcoholic steatohepatitis. Ann Intern Med 126, 137145.
5Marchesini, G, Brizi, M, Morselli-Labate, AM, Bianchi, G, Bugianesi, E, McCullough, AJ, Forlani, G & Melchionda, N (1999) Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 107, 450455.
6Moon, KW, Leem, JM, Bae, SS, Lee, KM, Kim, SH, Chae, HB, Park, SM & Youn, SJ (2004) The prevalence of metabolic syndrome in patients with nonalcoholic fatty liver disease (article in Korean). Korean J Hepatol 10, 197206.
7Sanyal, AJ (2002) AGA technical review on nonalcoholic fatty liver disease. Gastroenterology 123, 17051725.
8Marchesini, G, Bugianesi, E, Forlani, G, et al. (2003) Nonalcoholic fatty liver, steatohepatitis, and the metabolic syndrome. Hepatology 37, 917923.
9Silverman, JF, O'Brien, KF, Long, S, Leggett, N, Khazanie, PG, Pories, WJ, Norris, HT & Caro, JF (1990) Liver pathology in morbidly obese patients with and without diabetes. Am J Gastroenterol 85, 13491355.
10Angulo, P & Lindor, KD (2002) Non-alcoholic fatty liver disease. J Gastroenterol Hepatol 17, Suppl., S186S190.
11Bellentani, S, Saccoccio, G, Masutti, F, Croce, LS, Brandi, G, Sasso, F, Cristanini, G & Tiribelli, C (2000) Prevalence of and risk factors for hepatic steatosis in Northern Italy. Ann Intern Med 132, 112117.
12Fromenty, B & Pessayre, D (1995) Inhibition of mitochondrial β-oxidation as a mechanism of hepatotoxicity. Pharmacol Ther 67, 101154.
13McClain, CJ, Mokshagundam, SP, Barve, SS, Song, Z, Hill, DB, Chen, T & Deaciuc, I (2004) Mechanisms of non-alcoholic steatohepatitis. Alcohol 34, 6779.
14Wergedahl, H, Liaset, B, Gudbrandsen, OA, Lied, E, Espe, M, Muna, Z, Mork, S & Berge, RK (2004) Fish protein hydrolysate reduces plasma total cholesterol, increases the proportion of HDL cholesterol, and lowers acyl-CoA:cholesterol acyltransferase activity in liver of Zucker rats. J Nutr 134, 13201327.
15Anderson, JW, Johnstone, BM & Cook-Newell, ME (1995) Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med 333, 276282.
16Sirtori, CR, Even, R & Lovati, MR (1993) Soybean protein diet and plasma cholesterol: from therapy to molecular mechanisms. Ann N Y Acad Sci 676, 188201.
17Gudbrandsen, OA, Wergedahl, H, Liaset, B, Espe, M & Berge, RK (2005) Dietary proteins with high isoflavone content or low methionine–glycine and lysine–arginine ratios are hypocholesterolaemic and lower the plasma homocysteine level in male Zucker fa/fa rats. Br J Nutr 94, 321330.
18Friedman, JM (1997) Leptin, leptin receptors and the control of body weight. Eur J Med Res 2, 713.
19Bray, GA (1977) The Zucker-fatty rat: a review. Fed Proc 36, 148153.
20Triscari, J, Greenwood, MR & Sullivan, AC (1982) Oxidation and ketogenesis in hepatocytes of lean and obese Zucker rats. Metabolism 31, 223228.
21Krief, S & Bazin, R (1991) Genetic obesity: is the defect in the sympathetic nervous system? A review through developmental studies in the preobese Zucker rat. Proc Soc Exp Biol Med 198, 528538.
22Gudbrandsen, OA, Wergedahl, H, Mork, S, Liaset, B, Espe, M & Berge, RK (2006) Dietary soya protein concentrate enriched with isoflavones reduced fatty liver, increased hepatic fatty acid oxidation and decreased the hepatic mRNA level of VLDL receptor in obese Zucker rats. Br J Nutr 96, 249257.
23Skrede, A, Berge, GM, Storebakken, T, Herstad, O, Aarstad, KG & Sundstøl, F (1998) Digestibility of bacterial protein grown on natural gas in mink, pigs, chicken and Atlantic salmon. Anim Feed Sci Technol 76, 103116.
24Cohen, SA & Strydom, DJ (1988) Amino acid analysis utilizing phenylisothiocyanate derivatives. Anal Biochem 174, 116.
25Liaset, B, Julshamn, K & Espe, M (2003) Chemical composition and theoretical nutritional evaluation of the produced fractions from enzymic hydrolysis of salmon frames with Protamex. Proc Biochem 38, 17471759.
26Bligh, EG & Dyer, WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37, 911917.
27Mangold, HK (1969) Aliphatic lipids in thin-layer chromatography. In A Laboratory Handbook, 2nd ed., pp. 363421 [Stahl, E, editor]. Berlin, Germany: Springer.
28Morrison, WR & Smith, LM (1964) Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride–methanol. J Lipid Res 5, 600608.
29Chavali, SR, Zhong, WW, Utsunomiya, T & Forse, RA (1997) Decreased production of interleukin-1-β, prostaglandin-E2 and thromboxane-B2, and elevated levels of interleukin-6 and -10 are associated with increased survival during endotoxic shock in mice consuming diets enriched with sesame seed oil supplemented with Quil-A saponin. Int Arch Allergy Immunol 114, 153160.
30Berge, RK, Flatmark, T & Osmundsen, H (1984) Enhancement of long-chain acyl-CoA hydrolase activity in peroxisomes and mitochondria of rat liver by peroxisomal proliferators. Eur J Biochem 141, 637644.
31Willumsen, N, Hexeberg, S, Skorve, J, Lundquist, M & Berge, RK (1993) Docosahexaenoic acid shows no triglyceride-lowering effects but increases the peroxisomal fatty acid oxidation in liver of rats. J Lipid Res 34, 1322.
32Small, GM, Burdett, K & Connock, MJ (1985) A sensitive spectrophotometric assay for peroxisomal acyl-CoA oxidase. Biochem J 227, 205210.
33Tanabe, T, Nakanishi, S, Hashimoto, T, Ogiwara, H, Nikawa, J & Numa, S (1981) Acetyl-CoA carboxylase from rat liver. Methods Enzymol 71, 516.
34Roncari, DA (1981) Fatty acid synthase from human liver. Methods Enzymol 71, 7379.
35Skorve, J, al-Shurbaji, A, Asiedu, D, Bjorkhem, I, Berglund, L & Berge, RK (1993) On the mechanism of the hypolipidemic effect of sulfur-substituted hexadecanedioic acid (3-thiadicarboxylic acid) in normolipidemic rats. J Lipid Res 34, 11771185.
36Bates, EJ & Saggerson, D (1977) A selective decrease in mitochondrial glycerol phosphate acyltransferase activity in livers from streptozotocin-diabetic rats. FEBS Lett 84, 229232.
37Coleman, R & Bell, RM (1976) Triacylglycerol synthesis in isolated fat cells. Studies on the microsomal diacylglycerol acyltransferase activity using ethanol-dispersed diacylglycerols. J Biol Chem 251, 45374543.
38Muna, ZA, Gudbrandsen, OA, Wergedahl, H, Bohov, P, Skorve, J & Berge, RK (2002) Inhibition of rat lipoprotein oxidation after tetradecylthioacetic acid feeding. Biochem Pharmacol 63, 11271135.
39Motomura, W, Inoue, M, Ohtake, T, Takahashi, N, Nagamine, M, Tanno, S, Kohgo, Y & Okumura, T (2006) Up-regulation of ADRP in fatty liver in human and liver steatosis in mice fed with high fat diet. Biochem Biophys Res Commun 340, 11111118.
40Glosli, H, Gudbrandsen, OA, Mullen, AJ, Halvorsen, B, Rost, TH, Wergedahl, H, Prydz, H, Aukrust, P & Berge, RK (2005) Down-regulated expression of PPARα target genes, reduced fatty acid oxidation and altered fatty acid composition in the liver of mice transgenic for hTNFα. Biochim Biophys Acta 1734, 235246.
41Takahashi, S, Suzuki, J, Kohno, M, Oida, K, Tamai, T, Miyabo, S, Yamamoto, T & Nakai, T (1995) Enhancement of the binding of triglyceride-rich lipoproteins to the very low density lipoprotein receptor by apolipoprotein E and lipoprotein lipase. J Biol Chem 270, 1574715754.
42Trickett, JI, Patel, DD, Knight, BL, Saggerson, ED, Gibbons, GF & Pease, RJ (2001) Characterization of the rodent genes for arylacetamide deacetylase, a putative microsomal lipase, and evidence for transcriptional regulation. J Biol Chem 276, 3952239532.
43Marchesini, G, Marzocchi, R, Agostini, F & Bugianesi, E (2005) Nonalcoholic fatty liver disease and the metabolic syndrome. Curr Opin Lipidol 16, 421427.
44Wu, G & Morris, SM Jr (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336, 117.
45Khedara, A, Kawai, Y, Kayashita, J & Kato, N (1996) Feeding rats the nitric oxide synthase inhibitor, l-N(omega)nitroarginine, elevates serum triglyceride and cholesterol and lowers hepatic fatty acid oxidation. J Nutr 126, 25632567.
46Fu, WJ, Haynes, TE, Kohli, R, Hu, J, Shi, W, Spencer, TE, Carroll, RJ, Meininger, CJ & Wu, G (2005) Dietary l-arginine supplementation reduces fat mass in Zucker diabetic fatty rats. J Nutr 135, 714721.
47Redmond, HP, Wang, JH & Bouchier-Hayes, D (1996) Taurine attenuates nitric oxide- and reactive oxygen intermediate-dependent hepatocyte injury. Arch Surg 131, 12801288.
48Wu, G & Meininger, CJ (2002) Regulation of nitric oxide synthesis by dietary factors. Annu Rev Nutr 22, 6186.
49Dobrzyn, A & Ntambi, JM (2005) Stearoyl-CoA desaturase as a new drug target for obesity treatment. Obes Rev 6, 169174.
50Miyazaki, M, Kim, YC, Gray-Keller, MP, Attie, AD & Ntambi, JM (2000) The biosynthesis of hepatic cholesterol esters and triglycerides is impaired in mice with a disruption of the gene for stearoyl-CoA desaturase 1. J Biol Chem 275, 3013230138.
51Ntambi, JM, Miyazaki, M, Stoehr, JP, Lan, H, Kendziorski, CM, Yandell, BS, Song, Y, Cohen, P, Friedman, JN & Attie, AD (2002) Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci U S A 99, 1148211486.
52Haukeland, JW, Damås, JK, Konopski, Z, Løberg, EM, Haaland, T, Goverud, I, Torjesen, PA, Birkeland, K, Bjoro, K & Aukrust, P (2006) Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J Hepatol 44, 11671174.
53Steiner, S, Wahl, D, Mangold, BL, Robison, R, Raymackers, J, Meheus, L, Anderson, NL & Cordier, A (1996) Induction of the adipose differentiation-related protein in liver of etomoxir-treated rats. Biochem Biophys Res Commun 218, 777782.
54Corsini, E, Viviani, B, Zancanella, O, Lucchi, L, Visioli, F, Serrero, G, Bartesaghi, S, Galli, CL & Marinovich, M (2003) Induction of adipose differentiation related protein and neutral lipid droplet accumulation in keratinocytes by skin irritants. J Invest Dermatol 121, 337344.
55Oka, K, Ishimura-Oka, K, Chu, MJ, Sullivan, M, Krushkal, J, Li, WH & Chan, L (1994) Mouse very-low-density-lipoprotein receptor (VLDLR) cDNA cloning, tissue-specific expression and evolutionary relationship with the low-density-lipoprotein receptor. Eur J Biochem 224, 975982.

Keywords

Dietary single cell protein reduces fatty liver in obese Zucker rats

  • Oddrun Anita Gudbrandsen (a1), Hege Wergedahl (a1), Bjørn Liaset (a2), Marit Espe (a2), Sverre Mørk (a3) and Rolf Kristian Berge (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed