Skip to main content Accessibility help
×
Home

Dietary carbohydrate intake, glycaemic index, glycaemic load and digestive system cancers: an updated dose–response meta-analysis

  • Xianlei Cai (a1), Xueying Li (a2), Mengyao Tang (a3), Chao Liang (a1), Yuan Xu (a1), Miaozun Zhang (a1), Weiming Yu (a1) and Xiuyang Li (a4)...

Abstract

Several studies analysed the associations between dietary carbohydrate intake, glycaemic index (GI) and glycaemic load (GL) and digestive system cancers; however, the results remain controversial. This study was to perform a meta-analysis evaluating the quantitative and dose–response associations between carbohydrate intake, GI and GL, and risk of digestive system cancers. We searched medical and biological databases up to June 2018 and identified twenty-six cohort studies and eighteen case–control studies. Meta-analytic fixed or random effects models were applied to process data. We also performed dose–response analysis, meta-regression and subgroup analyses. We found that high levels of GI were significantly associated with the risk of digestive system cancers at the highest compared with the lowest categories from cohort studies (summary relative risk (RR)=1·10, 95 % CI 1·05, 1·15). Similar effects were observed from case–control studies of the comparison between the extreme categories, but the difference did not reach statistical significance (summary OR=1·28, 95 % CI 0·97, 1·69). We also observed significant dose–response association between GI and digestive system cancers, with every 10-unit increase in GI (summary RR=1·003; 95 % CI 1·000, 1·012 for cohort studies; summary OR=1·09; 95 % CI 1·06, 1·11 for case–control studies). In addition, both cohort studies and case–control studies indicated that neither dietary carbohydrate intake nor GL bore any statistical relationship to digestive system cancers from the results of the highest compared with the lowest categories analyses and dose–response analyses. The results suggest a moderate association between high-GI diets and the risk of digestive system cancers.

Copyright

Corresponding author

*Corresponding author: X. Li, fax +86 571 8820 8192, email lixiuyang@zju.edu.cn

References

Hide All
1. Wolever, TM & Mehling, C (2003) Long-term effect of varying the source or amount of dietary carbohydrate on postprandial plasma glucose, insulin, triacylglycerol, and free fatty acid concentrations in subjects with impaired glucose tolerance. Am J Clin Nutr 77, 612621.
2. Jenkins, DJ, Wolever, TM, Taylor, RH, et al. (1981) Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 34, 362366.
3. O’Reilly, J, Wong, SH & Chen, Y (2010) Glycaemic index, glycaemic load and exercise performance. Sports Med (Auckland, NZ) 40, 2739.
4. Folsom, AR, Demissie, Z & Harnack, L (2003) Glycemic index, glycemic load, and incidence of endometrial cancer: the Iowa women’s health study. Nutr Cancer 46, 119124.
5. Greenwood, DC, Threapleton, DE, Evans, CE, et al. (2013) Glycemic index, glycemic load, carbohydrates, and type 2 diabetes: systematic review and dose–response meta-analysis of prospective studies. Diabetes Care 36, 41664171.
6. Ludwig, DS (2002) The glycemic index: physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. JAMA 287, 24142423.
7. Cai, X, Wang, C, Wang, S, et al. (2015) Carbohydrate intake, glycemic index, glycemic load, and stroke: a meta-analysis of prospective cohort studies. Asia Pac J Public Health 27, 486496.
8. Aeberli, I, Gerber, PA, Hochuli, M, et al. (2011) Low to moderate sugar-sweetened beverage consumption impairs glucose and lipid metabolism and promotes inflammation in healthy young men: a randomized controlled trial. Am J Clin Nutr 94, 479485.
9. Aune, D, Chan, DS, Vieira, AR, et al. (2012) Dietary fructose, carbohydrates, glycemic indices and pancreatic cancer risk: a systematic review and meta-analysis of cohort studies. Ann Oncol 23, 25362546.
10. Ye, Y, Wu, Y, Xu, J, et al. (2017) Association between dietary carbohydrate intake, glycemic index and glycemic load, and risk of gastric cancer. Eur J Nutr 56, 11691177.
11. Turati, F, Galeone, C, Gandini, S, et al. (2015) High glycemic index and glycemic load are associated with moderately increased cancer risk. Mol Nutr Food Res 59, 13841394.
12. Choi, Y, Giovannucci, E & Lee, JE (2012) Glycaemic index and glycaemic load in relation to risk of diabetes-related cancers: a meta-analysis. Br J Nutr 108, 19341947.
13. Aune, D, Chan, DS, Lau, R, et al. (2012) Carbohydrates, glycemic index, glycemic load, and colorectal cancer risk: a systematic review and meta-analysis of cohort studies. Cancer Causes Control 23, 521535.
14. Schlesinger, S, Chan, DSM, Vingeliene, S, et al. (2017) Carbohydrates, glycemic index, glycemic load, and breast cancer risk: a systematic review and dose–response meta-analysis of prospective studies. Nutr Rev 75, 420441.
15. Wang, RJ, Tang, JE, Chen, Y, et al. (2015) Dietary fiber, whole grains, carbohydrate, glycemic index, and glycemic load in relation to risk of prostate cancer. Onco Targets Ther 8, 24152426.
16. Hu, J, La Vecchia, C, Augustin, LS, et al. (2013) Glycemic index, glycemic load and cancer risk. Ann Oncol 24, 245251.
17. Lahmann, PH, Ibiebele, TI, Webb, PM, et al. (2014) A case–control study of glycemic index, glycemic load and dietary fiber intake and risk of adenocarcinomas and squamous cell carcinomas of the esophagus: the Australian Cancer Study. BMC Cancer 14, 877889.
18. Rossi, M, Lipworth, L, Maso, LD, et al. (2009) Dietary glycemic load and hepatocellular carcinoma with or without chronic hepatitis infection. Ann Oncol 20, 17361740.
19. Huang, J, Fang, YJ, Xu, M, et al. (2018) Carbohydrate, dietary glycaemic index and glycaemic load, and colorectal cancer risk: a case–control study in China. Br J Nutr 119, 937948.
20. Sieri, S, Agnoli, C, Pala, V, et al. (2017) Dietary glycemic index, glycemic load, and cancer risk: results from the EPIC-Italy study. Sci Rep 7, 97579765.
21. Makarem, N, Bandera, EV, Lin, Y, et al. (2017) Carbohydrate nutrition and risk of adiposity-related cancers: results from the Framingham Offspring cohort (1991–2013). Br J Nutr 117, 16031614.
22. Li, N, Petrick, JL, Steck, SE, et al. (2017) A pooled analysis of dietary sugar/carbohydrate intake and esophageal and gastric cardia adenocarcinoma incidence and survival in the USA. Int J Epidemiol 46, 18361846.
23. Abe, SK, Inoue, M, Sawada, N, et al. (2016) Glycemic index and glycemic load and risk of colorectal cancer: a population-based cohort study (JPHC Study). Cancer Causes Control 27, 583593.
24. Booth, A, Clarke, M, Dooley, G, et al. (2012) The nuts and bolts of PROSPERO: an international prospective register of systematic reviews. Syst Rev 1, 2.
25. Moher, D, Liberati, A, Tetzlaff, J, et al. (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6, e1000097.
26. Stang, A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25, 603605.
27. Viale, L, Allotey, J, Cheong-See, F, et al. (2015) Epilepsy in pregnancy and reproductive outcomes: a systematic review and meta-analysis. Lancet 386, 18451852.
28. Cai, X, Li, X, Fan, W, et al. (2016) Potassium and obesity/metabolic syndrome: a systematic review and meta-analysis of the epidemiological evidence. Nutrients 8, 183194.
29. Higgins, JP & Thompson, SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21, 15391558.
30. Higgins, JP, Thompson, SG, Deeks, JJ, et al. (2003) Measuring inconsistency in meta-analyses. BMJ 327, 557560.
31. Mantel, N & Haenszel, W (1959) Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 22, 719748.
32. DerSimonian, R & Laird, N (1986) Meta-analysis in clinical trials. Control Clin Trials 7, 177188.
33. Begg, CB & Mazumdar, M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50, 10881101.
34. Egger, M & Smith, GD (1998) Bias in location and selection of studies. BMJ 316, 6166.
35. Aune, D, Sen, A, Leitzmann, MF, et al. (2017) Body mass index and physical activity and the risk of diverticular disease: a systematic review and meta-analysis of prospective studies. Eur J Nutr 56, 24232438.
36. Greenland, S & Longnecker, MP (1992) Methods for trend estimation from summarized dose–response data, with applications to meta-analysis. Am J Epidemiol 135, 13011309.
37. Orsini, N, Li, R, Wolk, A, et al. (2012) Meta-analysis for linear and nonlinear dose–response relations: examples, an evaluation of approximations, and software. Am J Epidemiol 175, 6673.
38. Foster-Powell, K, Holt, SH & Brand-Miller, JC (2002) International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr 76, 556.
39. George, SM, Mayne, ST, Leitzmann, MF, et al. (2009) Dietary glycemic index, glycemic load, and risk of cancer: a prospective cohort study. Am J Epidemiol 169, 462472.
40. Chen, H, Tucker, KL, Graubard, BI, et al. (2002) Nutrient intakes and adenocarcinoma of the esophagus and distal stomach. Nutr Cancer 42, 3340.
41. Mayne, ST, Risch, HA, Dubrow, R, et al. (2001) Nutrient intake and risk of subtypes of esophageal and gastric cancer. Cancer Epidemiol Biomarkers Prev 10, 10551062.
42. Larsson, SC, Bergkvist, L & Wolk, A (2006) Glycemic load, glycemic index and carbohydrate intake in relation to risk of stomach cancer: a prospective study. Int J Cancer 118, 31673169.
43. Sieri, S, Krogh, V, Agnoli, C, et al. (2015) Dietary glycemic index and glycemic load and risk of colorectal cancer: results from the EPIC-Italy study. Int J Cancer 136, 29232931.
44. Li, HL, Yang, G, Shu, XO, et al. (2011) Dietary glycemic load and risk of colorectal cancer in Chinese women. Am J Clin Nutr 93, 101107.
45. Kabat, GC, Shikany, JM, Beresford, SA, et al. (2008) Dietary carbohydrate, glycemic index, and glycemic load in relation to colorectal cancer risk in the Women’s Health Initiative. Cancer Causes Control 19, 12911298.
46. Larsson, SC, Giovannucci, E & Wolk, A (2007) Dietary carbohydrate, glycemic index, and glycemic load in relation to risk of colorectal cancer in women. Am J Epidemiol 165, 256261.
47. Higginbotham, S, Zhang, ZF, Lee, IM, et al. (2004) Dietary glycemic load and risk of colorectal cancer in the Women’s Health Study. J Natl Cancer Inst 96, 229233.
48. Vogtmann, E, Li, HL, Shu, XO, et al. (2013) Dietary glycemic load, glycemic index, and carbohydrates on the risk of primary liver cancer among Chinese women and men. Ann Oncol 24, 238244.
49. Fedirko, V, Lukanova, A, Bamia, C, et al. (2013) Glycemic index, glycemic load, dietary carbohydrate, and dietary fiber intake and risk of liver and biliary tract cancers in Western Europeans. Ann Oncol 24, 543553.
50. Simon, MS, Shikany, JM, Neuhouser, ML, et al. (2010) Glycemic index, glycemic load, and the risk of pancreatic cancer among postmenopausal women in the women’s health initiative observational study and clinical trial. Cancer Causes Control 21, 21292136.
51. Heinen, MM, Verhage, BA, Lumey, L, et al. (2008) Glycemic load, glycemic index, and pancreatic cancer risk in the Netherlands Cohort Study. Am J Clin Nutr 87, 970977.
52. Patel, AV, McCullough, ML, Pavluck, AL, et al. (2007) Glycemic load, glycemic index, and carbohydrate intake in relation to pancreatic cancer risk in a large US cohort. Cancer Causes Control 18, 287294.
53. Silvera, SA, Rohan, TE, Jain, M, et al. (2005) Glycemic index, glycemic load, and pancreatic cancer risk (Canada). Cancer Causes Control 16, 431436.
54. Weijenberg, MP, Mullie, PF, Brants, HA, et al. (2008) Dietary glycemic load, glycemic index and colorectal cancer risk: results from the Netherlands Cohort Study. Int J Cancer 122, 620629.
55. Strayer, L, Jacobs, DR Jr, Schairer, C, et al. (2007) Dietary carbohydrate, glycemic index, and glycemic load and the risk of colorectal cancer in the BCDDP cohort. Cancer Causes Control 18, 853863.
56. Renehan, AG, Zwahlen, M, Minder, C, et al. (2004) Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 363, 13461353.
57. Montesi, L, Mazzotti, A, Moscatiello, S, et al. (2013) Insulin resistance: mechanism and implications for carcinogenesis and hepatocellular carcinoma in NASH. Hepatol Int 7, Suppl 2, 814822.
58. Gong, Y, Ma, Y, Sinyuk, M, et al. (2016) Insulin-mediated signaling promotes proliferation and survival of glioblastoma through Akt activation. Neuro Oncol 18, 4857.
59. Pollak, M (2008) Insulin and insulin-like growth factor signalling in neoplasia. Nat Rev Cancer 8, 915928.
60. Gao, J, Chang, YS, Jallal, B, et al. (2012) Targeting the insulin-like growth factor axis for the development of novel therapeutics in oncology. Cancer Res 72, 312.
61. Yuen, JS & Macaulay, VM (2008) Targeting the type 1 insulin-like growth factor receptor as a treatment for cancer. Expert Opin Ther Targets 12, 589603.
62. Holt, SH, Miller, JC & Petocz, P (1997) An insulin index of foods: the insulin demand generated by 1000-kJ portions of common foods. Am J Clin Nutr 66, 12641276.
63. Bao, J, de Jong, V, Atkinson, F, et al. (2009) Food insulin index: physiologic basis for predicting insulin demand evoked by composite meals. Am J Clin Nutr 90, 986992.
64. Tasevska, N, Jiao, L, Cross, AJ, et al. (2012) Sugars in diet and risk of cancer in the NIH-AARP Diet and Health Study. Int J Cancer 130, 159169.
65. Howarth, NC, Murphy, SP, Wilkens, LR, et al. (2008) The association of glycemic load and carbohydrate intake with colorectal cancer risk in the Multiethnic Cohort Study. Am J Clin Nutr 88, 10741082.
66. McCarl, M, Harnack, L, Limburg, PJ, et al. (2006) Incidence of colorectal cancer in relation to glycemic index and load in a cohort of women. Cancer Epidemiol Biomarkers Prev 15, 892896.
67. Michaud, DS, Fuchs, CS, Liu, S, et al. (2005) Dietary glycemic load, carbohydrate, sugar, and colorectal cancer risk in men and women. Cancer Epidemiol Biomarkers Prev 14, 138147.
68. Terry, PD, Jain, M, Miller, AB, et al. (2003) Glycemic load, carbohydrate intake, and risk of colorectal cancer in women: a prospective cohort study. J Natl Cancer Inst 95, 914916.
69. Meinhold, CL, Dodd, KW, Jiao, L, et al. (2010) Available carbohydrates, glycemic load, and pancreatic cancer: is there a link? Am J Epidemiol 171, 11741182.
70. Nothlings, U, Murphy, SP, Wilkens, LR, et al. (2007) Dietary glycemic load, added sugars, and carbohydrates as risk factors for pancreatic cancer: the Multiethnic Cohort Study. Am J Clin Nutr 86, 14951501.
71. Johnson, KJ, Anderson, KE, Harnack, L, et al. (2005) No association between dietary glycemic index or load and pancreatic cancer incidence in postmenopausal women. Cancer Epidemiol Biomarkers Prev 14, 15741575.
72. Michaud, DS, Liu, S, Giovannucci, E, et al. (2002) Dietary sugar, glycemic load, and pancreatic cancer risk in a prospective study. J Natl Cancer Inst 94, 12931300.
73. Eslamian, G, Jessri, M, Hajizadeh, B, et al. (2013) Higher glycemic index and glycemic load diet is associated with increased risk of esophageal squamous cell carcinoma: a case–control study. Nutr Res (New York, NY) 33, 719725.
74. Bertuccio, P, Praud, D, Chatenoud, L, et al. (2009) Dietary glycemic load and gastric cancer risk in Italy. Br J Cancer 100, 558561.
75. Lazarevic, K, Nagorni, A & Jeremic, M (2009) Carbohydrate intake, glycemic index, glycemic load and risk of gastric cancer. Cent Eur J Public Health 17, 7578.
76. Qiu, JL, Chen, K, Zheng, JN, et al. (2005) Nutritional factors and gastric cancer in Zhoushan Islands, China. World J Gastroenterol 11, 43114316.
77. Augustin, LS, Gallus, S, Negri, E, et al. (2004) Glycemic index, glycemic load and risk of gastric cancer. Ann Oncol 15, 581584.
78. Lissowska, J, Gail, MH, Pee, D, et al. (2004) Diet and stomach cancer risk in Warsaw, Poland. Nutr Cancer 48, 149159.
79. Munoz, N, Plummer, M, Vivas, J, et al. (2001) A case–control study of gastric cancer in Venezuela. Int J Cancer 93, 417423.
80. Palli, D, Russo, A & Decarli, A (2001) Dietary patterns, nutrient intake and gastric cancer in a high-risk area of Italy. Cancer Causes Control 12, 163172.
81. Lagiou, P, Rossi, M, Tzonou, A, et al. (2009) Glycemic load in relation to hepatocellular carcinoma among patients with chronic hepatitis infection. Ann Oncol 20, 17411745.
82. Rossi, M, Lipworth, L, Polesel, J, et al. (2010) Dietary glycemic index and glycemic load and risk of pancreatic cancer: a case–control study. Ann Epidemiol 20, 460465.

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Cai et al. supplementary material
Cai et al. supplementary material 1

 Unknown (3.8 MB)
3.8 MB

Dietary carbohydrate intake, glycaemic index, glycaemic load and digestive system cancers: an updated dose–response meta-analysis

  • Xianlei Cai (a1), Xueying Li (a2), Mengyao Tang (a3), Chao Liang (a1), Yuan Xu (a1), Miaozun Zhang (a1), Weiming Yu (a1) and Xiuyang Li (a4)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed